Hyaluronan (HA) has an extraordinarily high turnover in physiological tissues, and HA degradation is accelerated in inflammatory and neoplastic diseases. CD44 (a cell surface receptor) and two hyaluronidases (HYAL1 and HYAL2) are thought to be responsible for HA binding and degradation; however, the role of these molecules in HA catabolism remains controversial. Here we show that KIAA1199, a deafness gene of unknown function, plays a central role in HA binding and depolymerization that is independent of CD44 and HYAL enzymes. The specific binding of KIAA1199 to HA was demonstrated in glycosaminoglycan-binding assays. We found that knockdown of KIAA1199 abolished HA degradation by human skin fibroblasts and that transfection of KIAA1199 cDNA into cells conferred the ability to catabolize HA in an endo-β-N-acetylglucosaminidase-dependent manner via the clathrin-coated pit pathway. Enhanced degradation of HA in synovial fibroblasts from patients with osteoarthritis or rheumatoid arthritis was correlated with increased levels of KIAA1199 expression and was abrogated by knockdown of KIAA1199. The level of KIAA1199 expression in uninflamed synovium was less than in osteoarthritic or rheumatoid synovium. These data suggest that KIAA1199 is a unique hyaladherin with a key role in HA catabolism in the dermis of the skin and arthritic synovium.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3619336 | PMC |
http://dx.doi.org/10.1073/pnas.1215432110 | DOI Listing |
Sci Rep
January 2025
Department of Research and Development, Ichimaru Pharcos Co. Ltd., Motosu, Gifu, Japan.
Hyaluronic acid (HA) is an important component of the skin's extracellular matrix, and its degradation leads to wrinkles. Hyaluronan-binding protein involved in hyaluronan depolymerization (HYBID) is the main factor responsible for HA degradation in dermis. This study aimed to identify natural plant materials that can effectively suppress HYBID expression and protect HA from degradation.
View Article and Find Full Text PDFFASEB J
January 2025
Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
Cancer metastasis is the leading cause of cancer-related deaths, making early detection and the prevention of metastatic progression critical research priorities. Recent studies have expanded our understanding of CEMIP (KIAA1199, HYBID), revealing its involvement in cancer metastasis and its potential role in slowing cancer progression. CEMIP plays critical roles in several stages of cancer metastasis: First, CEMIP promotes cancer cell proliferation to maintain cell heterogeneity before the metastasis process.
View Article and Find Full Text PDFSaudi Pharm J
September 2024
Department of Gynecological Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
Hepatocellular carcinoma (HCC) is one of the most lethal malignancies worldwide. Sorafenib (Sf) is currently the first-line treatment for HCC. However, due to the side effects and unsatisfied efficiency of Sf, it is urgent to combine different therapeutic agents to inhibit HCC progression and increase the therapeutic efficacy.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
December 2024
Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China. Electronic address:
Background: Excessive activation of cardiac fibroblasts (CFs) significantly contributes to adverse cardiac remodeling post-myocardial infarction (MI). CEMIP, initially recognized as an enzyme involved in hyaluronic acid (HA) degradation, has also been implicated in the activation of pulmonary fibroblasts. Nevertheless, the role and mechanism of CEMIP in adverse cardiac remodeling following MI remain largely unexplored.
View Article and Find Full Text PDFCells
July 2024
Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
Hyaluronan (HA) is a large polysaccharide that is broadly distributed and highly abundant in the soft connective tissues and embryos of vertebrates. The constitutive turnover of HA is very high, estimated at 5 g per day in an average (70 kg) adult human, but HA turnover must also be tightly regulated in some processes. Six genes encoding homologues to bee venom hyaluronidase (, , , , , ), as well as genes encoding two unrelated G8-domain-containing proteins demonstrated to be involved in HA degradation (, ), have been identified in humans.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!