Motivation: Supervised multivariate statistical analyses are often required to analyze the high-density spectral information in metabolic datasets acquired from complex mixtures in metabolic phenotyping studies. Here we present an implementation of the SRV-Statistical Recoupling of Variables-algorithm as an open-source Matlab and GNU Octave toolbox. SRV allows the identification of similarity between consecutive variables resulting from the high-resolution bucketing. Similar variables are gathered to restore the spectral dependency within the datasets and identify metabolic NMR signals. The correlation and significance of these new NMR variables for a given effect under study can then be measured and represented on a loading plot to allow a visual and efficient identification of candidate biomarkers. Further on, correlations between these candidate biomarkers can be visualized on a two-dimensional pseudospectrum, representing a correlation map, helping to understand the modifications of the underlying metabolic network.
Availability: SRV toolbox is encoded in MATLAB R2008A (Mathworks, Natick, MA) and in GNU Octave. It is available free of charge at http://www.prabi.fr/redmine/projects/srv/repository with a tutorial.
Contact: benjamin.blaise@chu-lyon.fr or vincent.navratil@univ-lyon1.fr.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/bioinformatics/btt136 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!