Plasmodium falciparum erythrocyte invasion is dependent on high affinity recognition of sialic acid on cell surface receptors. The erythrocyte binding-like (EBL) family of invasion ligands mediates recognition of sialic acid on erythrocyte glycoproteins. Erythrocyte-binding antigen-140 (PfEBA-140/BAEBL) is a critical EBL ligand that binds sialic acid on its receptor glycophorin C. We present here the crystal structure of the two-domain receptor-binding region of PfEBA-140 in complex with a glycan containing sialic acid. The structure identifies two glycan-binding pockets unique to PfEBA-140 and not shared by other EBL ligands. Specific molecular interactions that enable receptor engagement are identified and reveal that the glycan binding mode is distinct from that of apicomplexan and viral cell surface recognition ligands as well as host immune factors that bind sialic acid. Erythrocyte binding experiments elucidated essential glycan contact residues and identified divergent functional roles for each receptor-binding site. One of four polymorphisms proposed to affect receptor binding was localized to a glycan-binding site, providing a structural basis for altered erythrocyte engagement. The studies described here provide the first full description of sialic acid-dependent molecular interactions at the P. falciparum erythrocyte invasion interface and define a framework for development of PfEBA-140-based therapeutics, vaccines, and diagnostics assessing vaccine efficacy and natural immunity to infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3636924 | PMC |
http://dx.doi.org/10.1074/jbc.M113.450643 | DOI Listing |
Genome Biol Evol
January 2025
Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
The human malaria parasite Plasmodium falciparum evolved from a parasite that infects gorillas, termed Plasmodium praefalciparum. The sialic acids on glycans on the surface of erythrocytes differ between humans and other apes. It has recently been shown that the P.
View Article and Find Full Text PDFAnal Chem
January 2025
School of Life Sciences, Key Laboratory of Space Bioscience & Biotechnology, Northwestern Polytechnical University, Xi'an 710072, China.
Lymphoma is a malignant cancer characterized by a rapidly increasing incidence, complex etiology, and lack of obvious early symptoms. Efficient theranostics of lymphoma is of great significance in improving patient outcomes, empowering informed decision-making, and driving medical innovation. Herein, we developed a multifunctional nanoplatform for precise optical imaging and therapy of lymphoma based on a new photosensitizer (1-oxo-1-benzoo[de]anthracene-2,3-dicarbonitrile-triphenylamine (OBADC-TPA)).
View Article and Find Full Text PDFEng Life Sci
January 2025
Analytical Development & Analytical Attribute Science in Biologics Bristol Myers Squibb Devens Massachusetts USA.
This study emphasizes the critical importance of closely monitoring and controlling the sialic acid content in therapeutic glycoproteins, including EPO, interferon-γ, Orencia, Enbrel, and others, as the level of sialylation directly impacts their pharmacokinetics (PK), immunogenicity, potency, and overall clinical performance due to its influence on protein clearance via hepatic asialoglycoprotein receptors (ASGPR). The ASGPR recognizes and binds to glycoproteins exposed to terminal galactose or N-acetylgalactosamine residues, leading to receptor-mediated endocytosis. Recent studies have demonstrated that sialylation of O-linked glycan plays a role in protecting against macrophage galactose lectin (MGL)-mediated clearance.
View Article and Find Full Text PDFRSC Chem Biol
January 2025
Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine Kamigyo-ku 465 Kajii-cho Kyoto 602-8566 Japan
A multiomic study of the structural characteristics of type A and B influenza viruses by means of highly spectrally resolved Raman spectroscopy is presented. Three virus strains, A H1N1, A H3N2, and B98, were selected because of their known structural variety and because they have co-circulated with variable relative prevalence within the human population since the re-emergence of the H1N1 subtype in 1977. Raman signatures of protein side chains tyrosine, tryptophan, and histidine revealed unequivocal and consistent differences for pH characteristics at the virion surface, while different conformations of two C-S bond configurations in and methionine rotamers provided distinct low-wavenumber fingerprints for different virus lineages/subtypes.
View Article and Find Full Text PDFCell
January 2025
Beijing Life Science Academy, Beijing 102200, China; CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China. Electronic address:
The ongoing circulation of highly pathogenic avian influenza (HPAI) A (H5N1) viruses, particularly clade 2.3.4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!