A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A tutorial on propensity score estimation for multiple treatments using generalized boosted models. | LitMetric

The use of propensity scores to control for pretreatment imbalances on observed variables in non-randomized or observational studies examining the causal effects of treatments or interventions has become widespread over the past decade. For settings with two conditions of interest such as a treatment and a control, inverse probability of treatment weighted estimation with propensity scores estimated via boosted models has been shown in simulation studies to yield causal effect estimates with desirable properties. There are tools (e.g., the twang package in R) and guidance for implementing this method with two treatments. However, there is not such guidance for analyses of three or more treatments. The goals of this paper are twofold: (1) to provide step-by-step guidance for researchers who want to implement propensity score weighting for multiple treatments and (2) to propose the use of generalized boosted models (GBM) for estimation of the necessary propensity score weights. We define the causal quantities that may be of interest to studies of multiple treatments and derive weighted estimators of those quantities. We present a detailed plan for using GBM to estimate propensity scores and using those scores to estimate weights and causal effects. We also provide tools for assessing balance and overlap of pretreatment variables among treatment groups in the context of multiple treatments. A case study examining the effects of three treatment programs for adolescent substance abuse demonstrates the methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3710547PMC
http://dx.doi.org/10.1002/sim.5753DOI Listing

Publication Analysis

Top Keywords

multiple treatments
16
propensity score
12
boosted models
12
propensity scores
12
generalized boosted
8
causal effects
8
estimation propensity
8
treatments
7
propensity
5
tutorial propensity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!