The cell walls of grasses such as wheat, maize, rice, and sugar cane, contain large amounts of ferulate that is ester-linked to the cell wall polysaccharide glucuronoarabinoxylan (GAX). This ferulate is considered to limit the digestibility of polysaccharide in grass biomass as it forms covalent linkages between polysaccharide and lignin components. Candidate genes within a grass-specific clade of the BAHD acyl-coA transferase superfamily have been identified as being responsible for the ester linkage of ferulate to GAX. Manipulation of these BAHD genes may therefore be a biotechnological target for increasing efficiency of conversion of grass biomass into biofuel. Here, we describe the expression of these candidate genes and amounts of bound ferulate from various tissues and developmental stages of the model grass Brachypodium distachyon. BAHD candidate transcripts and significant amounts of bound ferulate were present in every tissue and developmental stage. We hypothesize that BAHD candidate genes similar to the recently described Oryza sativa p-coumarate monolignol transferase (OsPMT) gene (PMT sub-clade) are principally responsible for the bound para-coumaric acid (pCA), and that other BAHD candidates (non-PMT sub-clade) are responsible for bound ferulic acid (FA). There were some similarities with between the ratio of expression non-PMT/PMT genes and the ratio of bound FA/pCA between tissue types, compatible with this hypothesis. However, much further work to modify BAHD genes in grasses and to characterize the heterologously expressed proteins is required to demonstrate their function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3597984 | PMC |
http://dx.doi.org/10.3389/fpls.2013.00050 | DOI Listing |
J Agric Food Chem
January 2025
School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China.
The postingestion journey and bioconversion of wheat bran-bound ferulic acid, a known beneficial phytochemical, remain insufficiently understood. This study aims to systematically investigate its bioaccessibility, bioavailability, excretion, and colonic metabolism, both and . Initial analysis confirmed the abundance and bioactivity of ferulic acid in wheat bran.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China. Electronic address:
Purple rice (Oryza sativa L.) is a rich in endogenous phenolics and proteins. The naturally occurring interactions between phenolic compounds and proteins have been shown to have beneficial effects on human health.
View Article and Find Full Text PDFChem Biodivers
December 2024
Laboratory of Biochemistry and Environmental Toxicology, Faculty of Sciences, University of Badji Mokhtar, Annaba, Algeria.
The current study was conducted to explore the phytochemical composition and in vitro antioxidant activity of Moringa oleifera leaves aqueous extract (MOLE), as well as its in vivo modulatory effects on abamectin (ABM)-induced oxidative stress in rat erythrocytes and brain tissue. Following extraction, the total phenolic, flavonoid, condensed tannin and ortho-diphenolic contents of MOLE were determined. High-performance liquid chromatography (HPLC) analysis allowed the identification and the quantification of 12 bioactive compounds: gallic acid, chlorogenic acid, caffeic acid, vanillic acid, quercetin, ferulic acid, ascorbic acid, alizarin, hesperidin, neohesperidin, resveratrol, and naringin.
View Article and Find Full Text PDFFoods
December 2024
Faculty of Food & Bioengineering, Henan University of Science & Technology, Luoyang 471023, China.
This study investigated the influence of soaking and spraying with a sodium selenite (NaSeO) solution on selenium accumulation, γ-aminobutyric acid (GABA) content, phenolic compositions, and the antioxidant activity of foxtail millet sprouts. The screening results showed that foxtail millet seeds soaked with 60 mg/L of NaSeO solution and sprayed with 2 mg/L of NaSeO solution were the appropriate concentrations for the germination process. Compared with the spraying method, a presoaking treatment presented far higher selenium content and significantly higher ( < 0.
View Article and Find Full Text PDFPlant J
December 2024
Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
In grass cell walls, ferulic acid (FA) serves as an important cross-linker between cell wall polymers, such as arabinoxylan (AX) and lignin, affecting the physicochemical properties of the cell walls as well as the utilization properties of grass lignocellulose for biorefinering. Here, we demonstrate that hydroxycinnamaldehyde dehydrogenase (HCALDH) plays a crucial role in the biosynthesis of the FA used for cell wall feruloylation in rice (Oryza sativa). Bioinformatic and gene expression analyses of aldehyde dehydrogenases (ALDHs) identified two rice ALDH subfamily 2C members, OsHCALDH2 (OsALDH2C2) and OsHCALDH3 (OsALDH2C3), potentially involved in cell wall feruloylation in major vegetative tissues of rice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!