Towards a dynamic covalent molecular switch: substituent effects in chalcone/flavanone isomerism.

Org Biomol Chem

Department of Chemistry & Biochemistry, Northern Illinois University, 1425 W. Lincoln Hwy., DeKalb, IL 60115, USA.

Published: June 2013

Chalcone/flavanone interconversion occurs facilely under aqueous alkaline conditions making it a promising scaffold for the development of a covalent molecular switch. In this study, a single methoxy substituent is shown to have a significant impact on the equilibrium dynamics of this reaction; this impact is dependent on the site of substitution.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3ob40467fDOI Listing

Publication Analysis

Top Keywords

covalent molecular
8
molecular switch
8
dynamic covalent
4
switch substituent
4
substituent effects
4
effects chalcone/flavanone
4
chalcone/flavanone isomerism
4
isomerism chalcone/flavanone
4
chalcone/flavanone interconversion
4
interconversion occurs
4

Similar Publications

Photolithography is the most widely used micropatterning technique at the micro- and nanoscale in device fabrication. However, traditional photoresists used in photolithography are typically nonaqueous-based toxic substances that require harsh conditions for processing, limiting the development of biofunctional and biocompatible micropatterns. In this study, a protein-based aqueous photoresist derived from chemically modified silk fibroin named SAMA, capable of achieving high-resolution micropatterning (<1.

View Article and Find Full Text PDF

Upgrade of Weak σ-hole Bond Donors via Cr(CO)3 Complexation.

Chemistry

January 2025

Politecnico di Milano, Department of Chemistry, Materials, Chemical Engineer., via Mancinelli 7, 20131, Milan, ITALY.

Molecular recognition mediated by s-hole interactions is enhanced as the electrostatic potential at the σ-hole becomes increasingly positive. Traditional methods to strengthen σ-hole donor ability of atoms such as halogens often involve covalent modifications, such as, introducing electron-withdrawing substituents (neutral or positively charged) or electrochemical oxidation. Metal coordination, a relatively underexplored approach, offers a promising alternative.

View Article and Find Full Text PDF

Constructing highly conjugated three-dimensional covalent organic frameworks (3D COFs), particularly those with luminescent features, remains a significant challenge. In this work, we successfully synthesized a 3D COF, named 3D-Py-SP-COF, using a rigid and orthogonal spirobifluorene building block for the spatial 3D structure construction and planar pyrene as luminescent units. The incorporation of the pyrene and the unique rigid 3D network structure endow 3D-Py-SP-COF with fluorescent properties.

View Article and Find Full Text PDF

Regulating carbon hybridization states lies at the heart of engineering carbon materials with tailored properties but orchestrating the sequential transition across three states has remained elusive. Here, we visiualize stepwise evolution in carbon hybridizations from sp³ to sp² and to sp states via dehydrogenation and elimination reactions of methylcyano-functionalized molecules on surfaces. Utilizing scanning probing microscopy, we distinguish three distinct carbon-carbon bond types within polymers induced by annealing at elevated temperatures.

View Article and Find Full Text PDF

The structural organisation of pentraxin-3 and its interactions with heavy chains of inter-α-inhibitor regulate crosslinking of the hyaluronan matrix.

Matrix Biol

January 2025

Manchester Cell-Matrix Centre, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PL, United Kingdom. Electronic address:

Pentraxin-3 (PTX3) is an octameric protein, comprised of eight identical protomers, that has diverse functions in reproductive biology, innate immunity and cancer. PTX3 interacts with the large polysaccharide hyaluronan (HA) to which heavy chains (HCs) of the inter-α-inhibitor (IαI) family of proteoglycans are covalently attached, playing a key role in the (non-covalent) crosslinking of HC•HA complexes. These interactions stabilise the cumulus matrix, essential for ovulation and fertilisation in mammals, and are also implicated in the formation of pathogenic matrices in the context of viral lung infections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!