The organic solute transporter alpha-beta (OSTα-OSTβ) is one of the newest members of the solute carrier family, designated as SLC51, and arguably one of the most unique. The transporter is composed of two gene products encoded by SLC51A and SLC51B that heterodimerize to form the functional transporter complex. SLC51A encodes OSTα, a predicted 340-amino acid, 7-transmembrane (TM) domain protein, whereas SLC51B encodes OSTβ, a putative 128-amino acid, single-TM domain polypeptide. Heterodimerization of the two subunits increases the stability of the individual proteins, facilitates their post-translational modification, and is required for delivery of the functional transporter complex to the plasma membrane. There are no paralogues for SLC51A or SLC51B in any genome that has been examined. The transporter functions via a facilitated diffusion mechanism, and can mediate either efflux or uptake depending on the electrochemical gradient of its substrates. Overall, characterization of the transporter's substrate specificity, transport mechanism, tissue distribution, subcellular localization, and transcriptional regulation as well as the phenotype of the recently generated Slc51a-deficient mice have revealed that OSTα-OSTβ plays a central role in the transport of bile acids, conjugated steroids, and structurally-related molecules across the basolateral membrane of many epithelial cells. In particular, OSTα-OSTβ appears to be essential for intestinal bile acid absorption, and thus for dietary lipid absorption.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3827772 | PMC |
http://dx.doi.org/10.1016/j.mam.2012.11.005 | DOI Listing |
Int J Biol Macromol
January 2025
Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea. Electronic address:
This study describes the preparation of novel hybrid aerogels derived from gelatin (Gel), incorporating Br-functionalized zirconium-based metal-organic framework (UiO-66-Br; MOF) as modifying agent to effectively eliminate phosphate and fluoride ions from aqueous environments. The adsorption performance of MOF decorated Gel (Gel-xMOF) hybrid aerogels was investigated under different conditions, including agitation time, adsorbent dosage, solution pH, initial phosphate and fluoride concentrations, coexisting ions, and temperature. The functional groups of the gelatin network, coupled with UiO-66-Br, enhanced the adsorption performance of phosphate and fluoride ions from aqueous solutions.
View Article and Find Full Text PDFChemosphere
January 2025
Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C 3P8, Canada; École de technologie supérieure, Montréal (Québec), Canada, H3C 1K3. Electronic address:
J Chem Inf Model
January 2025
Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain.
Desalination of seawater by forward osmosis is a technology potentially able to address the global water scarcity problem. The major challenge limiting its widespread practical application is the design of a draw solute that can be separated from water by an energetically efficient process and then reused for the next cycle. Recent experiments demonstrate that a promising draw solute for forward-osmosis desalination is tetrabutylphosphonium 2,4,6-trimethylbenzenesulfonate ([P][TMBS]).
View Article and Find Full Text PDFAcc Chem Res
January 2025
Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Korea.
ConspectusWater-in-salt electrolytes (WiSEs) are promising electrolytes for next-generation lithium-ion batteries (LIBs), offering critical advantages like nonflammability and improved safety. These electrolytes have extremely high salt concentrations and exhibit unique solvation structures and transport mechanisms dominated by the formation of ion networks and aggregates. These ion networks are central to the performance of WiSEs, govern the transport properties and stability of the electrolyte, deviating from conventional dilute aqueous or organic electrolytes.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Chemical Optosensors & Applied Photochemistry Group (GSOLFA), Department of Organic Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.
Water conductivity sensing relies universally on electrical measurements, which are subject to corrosion of the electrodes and subsequent signal drift in prolonged in situ uses. Furthermore, they cannot provide contactless sensing or remote readout. To this end, a novel device for water conductivity monitoring has been developed by employing a microenvironment-sensitive ruthenium complex, [Ru(2,2'-bipyridine-4,4'-disulfonato)], embedded into a quaternary ammonium functionalized cross-linked polymer support.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!