The organic solute transporter alpha-beta (OSTα-OSTβ) is one of the newest members of the solute carrier family, designated as SLC51, and arguably one of the most unique. The transporter is composed of two gene products encoded by SLC51A and SLC51B that heterodimerize to form the functional transporter complex. SLC51A encodes OSTα, a predicted 340-amino acid, 7-transmembrane (TM) domain protein, whereas SLC51B encodes OSTβ, a putative 128-amino acid, single-TM domain polypeptide. Heterodimerization of the two subunits increases the stability of the individual proteins, facilitates their post-translational modification, and is required for delivery of the functional transporter complex to the plasma membrane. There are no paralogues for SLC51A or SLC51B in any genome that has been examined. The transporter functions via a facilitated diffusion mechanism, and can mediate either efflux or uptake depending on the electrochemical gradient of its substrates. Overall, characterization of the transporter's substrate specificity, transport mechanism, tissue distribution, subcellular localization, and transcriptional regulation as well as the phenotype of the recently generated Slc51a-deficient mice have revealed that OSTα-OSTβ plays a central role in the transport of bile acids, conjugated steroids, and structurally-related molecules across the basolateral membrane of many epithelial cells. In particular, OSTα-OSTβ appears to be essential for intestinal bile acid absorption, and thus for dietary lipid absorption.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3827772PMC
http://dx.doi.org/10.1016/j.mam.2012.11.005DOI Listing

Publication Analysis

Top Keywords

organic solute
8
solute transporter
8
slc51a slc51b
8
functional transporter
8
transporter complex
8
transporter
7
heteromeric organic
4
transporter ostα-ostβ/slc51
4
ostα-ostβ/slc51 transporter
4
transporter steroid-derived
4

Similar Publications

Lignin has emerged as a sustainable alternative to fossil-based polymers in advanced materials such as photonics. However, current methods for preparing photonic lignin materials are limited by non-benign organic solvents and low production yields. In this work, we present a highly efficient process that enables the production of photonic glasses with yields ranging from 48% to 72%, depending on the size of the lignin nanoparticles obtained from herbaceous soda lignin, softwood kraft lignin, and hardwood organosolv lignin.

View Article and Find Full Text PDF

Red-shifted optical absorption induced by donor-acceptor-donor π-extended dibenzalacetone derivatives.

RSC Adv

January 2025

Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Universidade Federal Rural do Semi-Árido (UFERSA) CEP 59625-900 Mossoró RN Brazil

Chalcones demonstrate significant absorption in the near ultraviolet-visible spectrum, making them valuable for applications such as solar cells, light-emitting diodes, and nonlinear optics. This study investigates four dibenzalacetone derivatives (DBAd), DBA, DBC, DEP, and DMA, examining the impact of electron-donating and electron-withdrawing groups and conjugation elongation on their electronic structure in solvents of varying polarities. Using the Polarizable Continuum Model (PCM) and time-dependent density functional theory (TD-DFT), we characterized the excited states of these compounds.

View Article and Find Full Text PDF

Blue Electroluminescent Carbon Dots Derived from Victorian Lignite.

ACS Omega

January 2025

Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan.

Carbon dots (CDs) derived from natural products have attracted considerable interest as eco-friendly materials with a wide range of applications, such as bioimaging, sensors, catalysis, and solar energy harvesting. Among these applications, electroluminescence (EL) is particularly desirable for light-emitting devices in display and lighting technologies. Typically, EL devices incorporating CDs feature a layered structure, where CDs function as the central emissive layer, flanked by charge transport layers and electrodes.

View Article and Find Full Text PDF

The objective of the study was to synthesize tetrazole molecules featuring nitro groups positioned at the para and meta locations. We aimed to assess their effectiveness in inhibiting corrosion of mild steel in a 1 M HCl solution at 298 K. Tetrazoles with 2,5-disubstitution were created using [3 + 2] cycloaddition and N-alkylation techniques, with a particular emphasis on synthesizing molecules that contain nitro groups.

View Article and Find Full Text PDF

Interfacial solar vapor generation (ISVG) accompanied by photocatalytic degradation holds immense potential to mitigate water scarcity and pollution. Distinct from the two detached functional components (photothermal agent and photocatalyst) in a conventional evaporator, in this study, an all-in-one photothermal/catalytic agent, nitrogen-containing honeycomb carbon nanosheets (NHC), was engineered for synergistic high-efficiency steam generation and photocatalysis functions. It was demonstrated that the superoxide radical generated on the surface of NHC conferred its catalytic activity to the photodegradation of organic pollutants under full solar spectrum irradiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!