Various forms of circulatory shock (including septic shock) lead to an impairment of vascular function, which importantly contributes to the development of multiple organ failure and mortality. Such dysfunction of blood vessels consists of two principal components: vascular smooth muscle (VSM) dysfunction, and endothelial dysfunction. The VSM dysfunction (progressive, therapy-resistant loss of VSM responsiveness to vasoconstrictor catecholamines, such as noradrenaline) leads to a progressive deterioration of blood pressure in patients with circulatory shock. The endothelial dysfunction (loss of the ability of the endothelium to produce nitric oxide and other endothelium-derived factors) contributes to the impairment of microvascular blood flow, to the enhanced adhesion and activation of neutrophils and platelets, to coagulation problems, and perfusion/metabolism mismatch in the affected organs. Here we overview the vascular regulatory functions of the novel gasotransmitter hydrogen sulfide (H2S), with an emphasis on its potential role in the pathogenesis of vascular dysfunction in circulatory shock. We first review the roles of endogenously produced or exogenously administered H2S on vascular function. Next, we review the results of published studies using shock models induced by bacterial lipopolysaccharide, and by cecal ligation and puncture, a polymicrobial model of sepsis showing overproduction of H2S. Finally, we summarize the potential mechanisms by which H2S may contribute to vascular dysfunction in shock and show an example of how the vascular response to H2S is altered in a rat model of endotoxemia. In addition, we outline the potential means by which modulation of H2S (pharmacological inhibition of its biosynthesis or therapeutic donation) may affect the outcome in circulatory shock.
Download full-text PDF |
Source |
---|
J Nanobiotechnology
January 2025
Department of Orthopedics, Zhuhai Medical College (Zhuhai People's Hospital), State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Chemistry and Materials Science, Jinan University, Zhuhai, 519000, China.
Spinal cord injury (SCI) is a critical condition affecting the central nervous system that often has permanent and debilitating consequences, including secondary injuries. Oxidative damage and inflammation are critical factors in secondary pathological processes. Selenium nanoparticles have demonstrated significant antioxidative and anti-inflammatory properties via a non-immunosuppressive pathway; however, their clinical application has been limited by their inadequate stability and functionality to cross the blood-spinal cord barrier (BSCB).
View Article and Find Full Text PDFBMC Infect Dis
January 2025
Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, Brazil.
Background: Cirrhosis has been pointed out as a clinical entity that leads to worse clinical prognosis in COVID-19 patients. However, this concept is controversial in the literature. We aimed to evaluate clinical outcomes by comparing patients with cirrhosis to those without cirrhosis in a Brazilian cohort.
View Article and Find Full Text PDFMol Psychiatry
January 2025
Icahn School of Medicine at Mount Sinai, Departments of Neuroscience, Psychiatry; Addiction Institute of Mount Sinai, New York, NY, USA.
Anxiety disorders are one of the top contributors to psychiatric burden worldwide. Recent years have seen a dramatic rise in the potential anxiolytic properties ascribed to cannabidiol (CBD), a non-intoxicating constituent of the Cannabis Sativa plant. This has led to several clinical trials underway to examine the therapeutic potential of CBD for anxiety disorders.
View Article and Find Full Text PDFSci Rep
January 2025
School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China.
Based on the symmetric initiation mechanism of double-wing cracks in coal rock mass induced by high-pressure electro-recoil water pressure, fracturing experiments have been performed on coal rock mass under different water pressures and discharge conditions using high-voltage electric pulse hydraulic fracturing devices. Combined with CT scans, the crack spatial distribution inside the post-break coal rock mass was analyzed and found that the edge of the water injection hole is prone to produce double-wing cracks along the drilling hole diameter. ABAQUS is used to verify the physical test and extend the test conditions, the geometric parameter change, morphological expansion rule and crack initiation mechanism of double-wing crack in coal rock mass under different discharge conditions and ground stress conditions are studied.
View Article and Find Full Text PDFJ Cardiothorac Vasc Anesth
December 2024
Kore University, Enna, Italy and Centro Cuore GB Morgagni, Catania, Italy.
Objectives: The benefit of combining multiple mechanical circulatory support (MCS) systems in patients with cardiogenic shock (CS) is debated. This review examines patient characteristics across studies to identify differences and assesses if patients with a higher-risk clinical profile receive Impella unloading.
Design: A systematic review and meta-analysis was conducted to examine if there were significant differences in baseline clinical parameters among patients receiving MCS in addition to venoarterial extracorporeal membrane oxygenation (VA ECMO).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!