Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Hydrophobic hydration is critical in biology as well as many industrial processes. Here, computer simulations of ethanol/water mixtures show that a three-stage mechanism of dehydration of ethanol explains the anomalous concentration dependence of the thermodynamic partial molar volumes, as well as recent data from neutron diffraction and Raman scattering. Moreover, the simulations show that the breakdown of hydrophobic hydration shells, whose structure is determined by the unique molecular properties of water, is caused by the microcomplexity of the environment and may be representative of early events in protein folding and structure stabilization in aqueous solutions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja312504q | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!