TiO2, in the rutile phase with a high concentration of self-doped Ti(3+), has been synthesized via a facile, all inorganic-based, and scalable method of oxidizing TiH2 in H2O2 followed by calcinations in Ar gas. The material was shown to be photoactive in the visible-region of the electromagnetic spectrum. Powdered X-ray diffraction (PXRD), transmission electron microscopy (TEM), ultraviolet-visible-near-infrared (UV-vis-NIR), diffuse reflectance spectroscopy (DRS), and Brunauer-Emmett-Teller (BET) methods were used to characterize the crystalline, structural, and optical properties and specific surface area of the as-synthesized Ti(3+)-doped rutile, respectively. The concentration of Ti(3+) was quantitatively studied by electron paramagnetic resonance (EPR) to be as high as one Ti(3+) per ~4300 Ti(4+). Furthermore, methylene blue (MB) solution and an industry wastewater sample were used to examine the photocatalytic activity of the Ti(3+)-doped TiO2 which was analyzed by UV-vis absorption, Fourier transform infrared spectroscopy (FT-IR), and electrospray ionization mass spectrometry (ESI-MS). In comparison to pristine anatase TiO2, our Ti(3+) self-doped rutile sample exhibited remarkably enhanced visible-light photocatalytic degradation on organic pollutants in water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic3026182 | DOI Listing |
Molecules
January 2025
State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
Metal-free materials have been proved to be promising replacements of traditional metal-based catalysts for advanced oxidation reactions. Carbon nitride was found to be able to activate HO and generate hydroxyl radicals (•OH). Nevertheless, the performance of carbon nitride is highly dependent on an external light source.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy.
In this study, we developed a facile one-pot synthesis of a nanocomposite consisting of silver nanoparticles (AgNPs) growing over graphene oxide (GO) nanoflakes (AgNPs@GO). The process consists of the in situ formation of AgNPs in the presence of GO nanosheets via the spontaneous decomposition of silver(I) acetylacetonate (Ag(acac)) after dissolution in water. This protocol is compared to an ex situ approach where AgNPs are added to a waterborne GO nanosheet suspension to account for any attractive interaction between preformed nanomaterials.
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
Furong Labratory, Changsha 410083, China.
A fluorescence probe for "switch-on" detection of alkaline phosphatase (ALP) was developed based on Au nanoclusters anchored MnO nanosheets (Au NCs-MnO NSs), which were synthesized using bovine serum albumin (BSA) as template through a simple one-pot approach. In the sensing system, MnO NSs function as both energy acceptors and target identifiers, effectively quenches the fluorescence of Au NCs via fluorescence resonance energy transfer (FRET). The presence of ALP catalyzes the hydrolysis of L-ascorbic acid-2-phosphate (AAP) to ascorbic acid (AA), reducing MnO NSs to Mn and facilitate the fluorescence recovery of Au NCs.
View Article and Find Full Text PDFMater Today Bio
February 2025
State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
The widespread antibiotic resistance has called for alternative antimicrobial agents. Carbon nanomaterials, especially carbon quantum dots (CQDs), may be promising alternatives due to their desirable physicochemical properties and potential antimicrobial activity, but their antimicrobial mechanism remains to be investigated. In this study, nitrogen-doped carbon quantum dots (N-CQDs) were synthesized to inactivate antibiotic-resistant bacteria and treat bacterial keratitis.
View Article and Find Full Text PDFJ Environ Manage
January 2025
College of Environmental Science, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Sichuan Provincial Engineering Research Center of Agricultural Non-point Source Pollution Control, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China.
As a newly developed technology, lignocellulose pretreatment of PHP (phosphoric acid coupled with hydrogen peroxide) can facilitate the enzymatic hydrolysis of pretreated lignocellulose for glucose production. It also has been found that the derived oxidative tail gas from pretreatment can facilely degrade organic pollutant. To balance the pollutant degradation and the glucose yield, the collaborative optimization on pretreatment was investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!