Photorespiration represents one of the major highways of primary plant metabolism and is the most prominent example of metabolic cell organelle integration, since the pathway requires the concerted action of plastidial, peroxisomal, mitochondrial and cytosolic enzymes and organellar transport proteins. Oxygenation of ribulose-1,5-bisphosphate by Rubisco leads to the formation of large amounts of 2-phosphoglycolate, which are recycled to 3-phosphoglycerate by the photorespiratory C2 cycle, concomitant with stoichiometric production rates of H2 O2 in peroxisomes. Apart from its significance for agricultural productivity, a secondary function of photorespiration in pathogen defence has emerged only recently. Here, we summarise literature data supporting the crosstalk between photorespiration and pathogen defence and perform a meta-expression analysis of photorespiratory genes during pathogen attack. Moreover, we screened Arabidopsis proteins newly predicted using machine learning methods to be targeted to peroxisomes, the central H2 O2 -producing organelle of photorespiration, for homologues of known pathogen defence proteins and analysed their expression during pathogen infection. The analyses further support the idea that photorespiration and non-photorespiratory peroxisomal metabolism play multi-faceted roles in pathogen defence beyond metabolism of reactive oxygen species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1438-8677.2012.00723.x | DOI Listing |
Anim Microbiome
January 2025
Genomics & Bioanalytics, Los Alamos National Laboratory, Los Alamos, NM, 87506, USA.
Background: African buffalo (Syncerus caffer) is a significant reservoir host for many zoonotic and parasitic infections in Africa. These include a range of viruses and pathogenic bacteria, such as tick-borne rickettsial organisms. Despite the considerations of mammalian blood as a sterile environment, blood microbiome sequencing could become crucial for agnostic biosurveillance.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India.
MicroRNAs (miRNAs) and transfer RNA-derived stress-induced RNAs (tiRNAs) have emerged as crucial players in the post-transcriptional regulation of gene expression in various cellular processes, including immunity and host defense against infections. In recent years, increasing evidence has highlighted their complex role in influencing the host response during viral and bacterial infections. miRNAs have been shown to play multiple roles in host-pathogen interaction like TLR activation and altered disease virulence during bacterial infections.
View Article and Find Full Text PDFXi Bao Yu Fen Zi Mian Yi Xue Za Zhi
January 2025
Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming 650500, China. *Corresponding authors, E-mail:
The innate immune response is the first line of defense for the host against viral infections. Targeted degradation of pathogenic microorganisms through autophagy, in conjunction with pattern recognition receptors synergistically inducing the production of interferon (IFN), constitutes an important pathway for the body to resist viral infections. Rubicon, a Run domain Beclin 1-interacting and cysteine-rich domain protein, has an inhibitory effect on autophagy and IFN production.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, The Netherlands.
Pest Manag Sci
January 2025
Dpto. Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.
Background: Chitin is a crucial component of fungal cell walls and an effective elicitor of plant immunity; however, phytopathogenic fungi have developed virulence mechanisms to counteract the activation of this plant defensive response. In this study, the molecular mechanism of chitin-induced suppression through effectors involved in chitin deacetylases (CDAs) and their degradation (EWCAs) was investigated with the idea of developing novel dsRNA-biofungicides to control the cucurbit powdery mildew caused by Podosphaera xanthii.
Results: The molecular mechanisms associated with the silencing effect of the PxCDA and PxEWCAs genes were first studied through dsRNA cotyledon infiltration assays, which revealed a ≈80% reduction in fungal biomass and a 50% decrease in gene expression.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!