Purpose: The study of the interactions leading to network- or region-specific propagation of seizures is crucial to understand ictogenesis. We have recently found that systemic (arterial) application of the potassium channel blocker, 4-aminopyridine (4AP), induces different and independent seizure activities in olfactory and in limbic structures. Here, we have characterized the network and cellular features that support 4AP-induced seizure-like events in the olfactory cortex.
Methods: Simultaneous extracellular recordings were performed from the piriform cortex, the entorhinal cortex, the olfactory tubercle, and the amygdala of the in vitro isolated guinea pig brain preparation. Intracellular, sharp electrode recordings were obtained from neurons of different layers of the region of ictal onset, the piriform cortex. Seizure-like discharges were induced by both arterial perfusion and local intracortical injections of 4AP.
Key Findings: Arterial application of 4AP induces independent seizure activities in limbic and olfactory cortices. Both local applications of 4AP and cortico-cortical disconnections demonstrated that region-specific seizure-like events initiated in the primary olfactory cortex and propagate to anatomically related areas. Seizures induced by arterial administration of 4-AP are preceded by runs of fast activity at circa 30-40 Hz and are independently generated in the hemispheres. Simultaneous extracellular and intracellular recordings in the piriform cortex revealed that the onset of seizure correlates with (1) a gradual amplitude increase of fast activity runs, (2) a large intracellular depolarization with action potential firing of superficial layer neurons, and (3) no firing in a subpopulation of deep layers neurons. During the ictal event, neuronal firing was abolished for 10-30 s in all neurons and gradually restored and synchronized before seizure termination.
Significance: Our data show that olfactory neuronal networks sustain the generation of seizure-like activities that are independent from those observed in adjacent and connected limbic cortex regions. The data support the concept that functionally and anatomically hard-wired networks generate region-specific seizure patterns that could be substrates for system epilepsy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4891192 | PMC |
http://dx.doi.org/10.1111/epi.12133 | DOI Listing |
Biological memory networks are thought to store information by experience-dependent changes in the synaptic connectivity between assemblies of neurons. Recent models suggest that these assemblies contain both excitatory and inhibitory neurons (E/I assemblies), resulting in co-tuning and precise balance of excitation and inhibition. To understand computational consequences of E/I assemblies under biologically realistic constraints we built a spiking network model based on experimental data from telencephalic area Dp of adult zebrafish, a precisely balanced recurrent network homologous to piriform cortex.
View Article and Find Full Text PDFDiagnostics (Basel)
December 2024
Medical School, Universidad de las Américas (UDLA), Quito 170124, Ecuador.
The piriform cortex (PC) plays a pivotal role in the onset and propagation of temporal lobe epilepsy (TLE), making it a potential target for therapeutic interventions. This review delves into the anatomy and epileptogenic connections of the PC, highlighting its significance in seizure initiation and resistance to pharmacological treatments. Despite its importance, the PC remains underexplored in surgical approaches for TLE.
View Article and Find Full Text PDFNat Commun
January 2025
Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
Norepinephrine (NE) released from locus coeruleus (LC) noradrenergic (NAergic) neurons plays a pivotal role in the regulation of olfactory behaviors. However, the precise circuits and receptor mechanisms underlying this function are not well understood. Here, in DBH-Cre mice model, we show that LC NAergic neurons project directly to both anterior piriform cortex (aPC) and the olfactory bulb (OB).
View Article and Find Full Text PDFNeurosci Lett
December 2024
Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain. Electronic address:
Neuronal structural plasticity gives the adult brain the capacity to adapt to internal or external factors by structural and molecular changes. These plastic processes seem to be mediated, among others, by the action of the neurotransmitter serotonin through specific receptors (5-HTRs). Previous studies have shown that the maturation of granule cells in the hippocampus is mediated by 5-HT3.
View Article and Find Full Text PDFEur J Neurosci
January 2025
Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.
The locus coeruleus (LC) plays a vital role in cognitive function through norepinephrine release. Impaired LC neuronal health and function is linked to cognitive decline during ageing and Alzheimer's disease. This study investigates age-related alterations in olfactory detection and discrimination learning, along with its reversal, in Long-Evans rats, and examines the effects of atomoxetine (ATM), a norepinephrine uptake inhibitor, on these processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!