Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Combined pollution of 1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane (DDT) and cadmium (Cd) in agricultural soils is of great concern because they present serious risk to food security and human health. In order to develop a cost-effective and safe method for the removal of DDTs and Cd in soil, combined remediation of DDTs and Cd in soil by Sphingobacterium sp. D-6 and the hyperaccumulator, Sedum alfredii Hance was investigated. After treatment for 210 days, the degradation half-lives of DDTs in soils treated by strain D-6 decreased by 8.1% to 68.0% compared with those in the controls. The inoculation of strain D-6 into soil decreased the uptake of DDTs by pak choi and S. alfredii. The shoots/roots ratios of S. alfredii for the Cd accumulation ranged from 12.32 to 21.75. The Cd concentration in soil decreased to 65.8%-71.8% for S. alfredii treatment and 14.1%-58.2% for S. alfredii and strain D-6 combined treatment, respectively, compared with that in the control. The population size of the DDTs-degrading strain, Simpson index (1/D) and soil respiratory rate decreased in the early stage of treatment and then gradually increased, ultimately recovering to or exceeding the initial level. The results indicated that synchronous incorporation of strain D-6 and S. alfredii into soil was found to significantly (p < or = 0.05) enhance the degradation of DDTs in soil and the hyperaccumulation of Cd in S. alfredii. It was concluded that strain D-6 and S. alfredii could be used successfully to control DDTs and Cd in contaminated soil.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1001-0742(11)60895-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!