The first di-protonated [FeFe] hydrogenase model relevant to key intermediates in catalytic hydrogen production is reported. The complex bearing the S-proton and Fe-hydride is structurally and spectroscopically characterized as well as studied by DFT calculations. The results show that the thiolate sulfur can accept protons during the catalytic routes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3cc39008j | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Technische Universitat Dortmund, Chemistry and Chemical Biology, Otto-Hahn-Strasse 4a, 44227, Dortmund, GERMANY.
Iron-sulfur clusters play a crucial role in electron transfer for many essential enzymes, including [FeFe]-hydrogenases. This study focuses on the [4Fe4S] cluster ([4Fe]H) of the minimal [FeFe]-hydrogenase from Chlamydomonas reinhardtii (CrHydA1) and employs advanced spectroscopy, site-directed mutagenesis, molecular dynamics simulations, and QM/MM calculations. We provide insights into the complex electronic structure of [4Fe]H and its role in the catalytic reaction of CrHydA1, serving as paradigm for understanding [FeFe]-hydrogenases.
View Article and Find Full Text PDFOrganometallics
January 2025
School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.
The dianion [Fe[(μ-SeCH)NH](CN)(CO)] ([]) is of interest for the preparation of the selenide analog of the active site of the [FeFe]-hydrogenases. The obvious route for its synthesis by cyanation of Fe[(μ-SeCH)NH](CO) () fails for reasons that this paper explains and resolves. We show that CN cleaves Se-C bonds in .
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Laboratory for Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.
[FeFe]-hydrogenases catalyze the reversible two-electron reduction of two protons to molecular hydrogen. Although these enzymes are among the most efficient H-converting biocatalysts in nature, their catalytic cofactor (termed H-cluster) is irreversibly destroyed upon contact with dioxygen. The [FeFe]-hydrogenase CbA5H from has a unique mechanism to protect the H-cluster from oxygen-induced degradation.
View Article and Find Full Text PDFACS Catal
December 2024
Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K.
Synthetic photobiocatalysts are promising catalysts for valuable chemical transformations by harnessing solar energy inspired by natural photosynthesis. However, the synergistic integration of all of the components for efficient light harvesting, cascade electron transfer, and efficient biocatalytic reactions presents a formidable challenge. In particular, replicating intricate multiscale hierarchical assembly and functional segregation involved in natural photosystems, such as photosystems I and II, remains particularly demanding within artificial structures.
View Article and Find Full Text PDFChemistry
December 2024
Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, 28040-, Madrid, Spain.
The synthesis and characterization of novel compounds (5-8) as mimetics of [FeFe]-hydrogenase, combining two distinct systems capable of participating in hydrogen evolution reactions (HER): the [(μ-adt)Fe(CO)] fragment and M-salen complexes (salen=N,N'-bis(salicylidene)ethylenediamine) (M=Zn, Ni, Fe, Mn), is reported. These complexes were synthesized in high yields via a three-step procedure from N,N'-bis(4-R-salicylidene)ethanediamine) 4 [R=Fe(CO)(μ-SCH)NCOCHO]. Structural analysis through spectroscopic, spectrometric, and computational (DFT) methods confirmed distorted tetrahedral and square-planar geometries for Zn-salen and Ni-salen complexes (5 and 6) respectively, while complexes Fe-salen 7 and Mn-salen 8 exhibit square-based pyramidal structures typical of Fe(III) and Mn(III) high-spin salen-complexes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!