Background: In patients with Type 1 Diabetes (T1D) who develop microalbuminuria, progressive decline in glomerular filtration rate (GFR) may be initiated by leakage into the urine of toxic proteins (txUPs). This study tested this hypothesis.

Methods: After archiving baseline urine, we followed T1D patients with microalbuminuria for 8-12 years to distinguish those in whom GFR declined (Decliners) and those in whom it remained stable (Non-decliners). Human proximal tubular cells (HK-2 cells) were grown in serum-free medium enriched with pooled urines from Decliners or Non-decliners. We determined genome-wide expression profiles in extracted mRNA.

Results: The two pooled urines induced differential expression of 312 genes. In terms of gene ontology, molecular functions of the 119 up-regulated genes were enriched for protein binding and peptidase inhibitor activities. Their biologic processes were enriched for defense response, responses to other organisms, regulation of cellular processes, or response to stress or stimulus, and programmed cell death. The 195 down-regulated genes were disproportionately represented in molecular functions of cation binding, hydrolase activity, and DNA binding. They were disproportionately represented in biological processes for regulation of metabolic processes, nucleic acid metabolic processes, cellular response to stress and macromolecule biosynthesis. The set of up-regulated genes in HK-2 cells overlaps significantly with sets of over-expressed genes in tubular and interstitial compartments of kidney biopsies from patients with advanced DN (33 genes in one study and 25 in the other compared with 10.3 expected by chance, p<10(-9) and p<10(-4), respectively). The overlap included genes encoding chemokines and cytokines. Overlap of down-regulated genes was no more than expected by chance.

Conclusions: Molecular processes in tubules and interstitium seen in advanced diabetic nephropathy can be induced in vitro by exposure to urine from patients with minimal microalbuminuria who subsequently developed progressive renal function decline, presumably due to putative txUPs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3591403PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0057751PLOS

Publication Analysis

Top Keywords

proximal tubular
8
tubular cells
8
cells hk-2
8
type diabetes
8
hk-2 cells
8
pooled urines
8
molecular functions
8
up-regulated genes
8
response stress
8
disproportionately represented
8

Similar Publications

LOX-induced tubulointerstitial fibrosis via the TGF-β/LOX/Snail axis in diabetic mice.

J Transl Med

January 2025

Department of Basic Medical Sciences, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.

Background: The partial epithelial-mesenchymal transition (EMT) is emerging as a significant mechanism in diabetic nephropathy (DN). LOX is a copper amine oxidase conventionally thought to act by crosslinking collagen. However, the role of LOX in partial EMT and fibrotic progression in diabetic nephropathy has not been investigated experimentally.

View Article and Find Full Text PDF

High glucose induces renal tubular epithelial cell senescence by inhibiting autophagic flux.

Hum Cell

January 2025

Department of Nephrology, Zhong Da Hospital, Gulou District, No. 87, Dingjiaqiao, Zhongyangmen Street, Nanjing, 210009, Jiangsu, China.

Autophagy, a cellular degradation process involving the formation and clearance of autophagosomes, is mediated by autophagic proteins, such as microtubule-associated protein 1 light chain 3 (LC3) and sequestosome 1 (p62), and modulated by 3-methyladenine (3-MA) as well as chloroquine (CQ). Senescence, characterised by permanent cell cycle arrest, is marked by proteins such as cyclin-dependent kinase inhibitor 1 (p21) and tumour protein 53 (p53). This study aims to investigate the relationship between cell senescence and renal function in diabetic kidney disease (DKD) and the effect of autophagy on high-glucose-induced cell senescence.

View Article and Find Full Text PDF

Autoimmune Tubulopathies.

J Am Soc Nephrol

January 2025

Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, F-75006 Paris, France.

The renal tubule and collecting duct express a large number of proteins, all having putative immunoreactive motives. Therefore, all can be the target of pathogenic autoantibodies. However, autoimmune tubulopathies seem to be rare and we hypothesize that they are underdiagnosed.

View Article and Find Full Text PDF

The role played by anionic channels in diabetic kidney disease (DKD) is not known. Chloride channel accessory 1 (CLCA1) facilitates the activity of TMEM16A (Anoctamin-1), a Ca2+-dependent Cl- channel. We examined if CLCA1/TMEM16A had a role in DKD.

View Article and Find Full Text PDF

Various tubular diseases in patients with multiple myeloma (MM) are caused by monoclonal immunoglobulin light chains (LCs). However, the physicochemical characteristics of the disease-causing LCs contributing to the onset of MM-associated tubular diseases remain unclear. We herein report a rare case of MM-associated combined tubulopathies: non-crystalline light chain proximal tubulopathy (LCPT) and crystalline light chain cast nephropathy (LCCN).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!