Extremely efficacious gene transfection vector: The rapid and facile modification of PEI with commercially available TMC produces an extremely efficacious gene delivery vector with minimal cytotoxicity. Functionalization of PEI is easily controlled by PEI:cyclic carbonate feed ratios and allows for the addition of functionality. Modified PEIs hold great potential as gene delivery systems due to easy synthesis, scalability, low cost, low toxicity, and outstanding transfection capacity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.201300046DOI Listing

Publication Analysis

Top Keywords

gene transfection
8
extremely efficacious
8
efficacious gene
8
gene delivery
8
mitigated cytotoxicity
4
cytotoxicity tremendously
4
tremendously enhanced
4
gene
4
enhanced gene
4
transfection efficiency
4

Similar Publications

Background: Variants in the GABRA2 gene, which encodes the α2 subunit of the γ-aminobutyric acid A receptor, have been linked to a rare form of developmental and epileptic encephalopathy (DEE) referred to as DEE78. Only eight patients have been reported globally. This study presents the clinical presentation and genetic analysis of a Chinese family with a child diagnosed with DEE78, due to a novel GABRA2 variant.

View Article and Find Full Text PDF

Objective: Rheumatoid arthritis (RA) is a disabling systemic autoimmune disease worldwide; however, its molecular pathway remains largely unknown. Thus, this study aimed to explore the effects of receptor-interacting serine/threonine kinase 2 (RIPK2) on RA progression and its underlying mechanism.

Material And Methods: RIPK2 expression was analyzed using real-time quantitative polymerase chain reaction, immunohistochemical staining, and Western blot (WB) analysis in RA synovial tissues or cells.

View Article and Find Full Text PDF

Improving the production of BaEV lentivirus by comprehensive optimization.

J Virol Methods

December 2024

Shandong Lishan Biotechnology Co., Ltd, Jinan 250013, P R China. Electronic address:

With the rapid development of the cell and gene therapy industry, there is an increasing demand for lentiviral vectors that can efficiently infect cells of different purposes. BaEV lentiviruses have been shown to efficiently infect hematopoietic stem cells, primary B cells, and NK cells, which traditional VSV-G lentiviruses cannot infect. However, there is a problem of low virus yield in the production of BaEV lentivirus.

View Article and Find Full Text PDF

AAV2-mediated ABD-FGF21 gene delivery produces a sustained anti-hyperglycemic effect in type 2 diabetic mouse.

Life Sci

December 2024

College of Medicine and Health Sciences, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China. Electronic address:

Background: Fibroblast Growth Factor 21 (FGF21) is a naturally occurring peptide hormone involved in the regulation of glycolipid metabolism, and it shows promise as a potential treatment for type 2 diabetes mellitus (T2DM). However, the short half-life and poor pharmacokinetics of native FGF21 limit its efficacy in reducing hyperglycemia in vivo. Therefore, maintaining stable and sustained blood concentrations of FGF21 is crucial for its role as an effective regulator of glycolipid metabolism in vivo.

View Article and Find Full Text PDF

Effect of ΔNp63β on cell cycle and apoptosis in T98G cells.

Turk J Med Sci

December 2024

Department of Microbiology, Faculty of Medicine, Ankara University, Ankara, Turkiye.

Background/aim: The p53 protein, a crucial tumor suppressor, governs cell cycle regulation and apoptosis. Similarly, p63, a member of the p53 family, exhibits traits of both tumor suppression and oncogenic behavior through its isoforms. However, the functional impact of ΔNp63β, an isoform of the p63 protein, on human glioma cancer cells like T98G cells remains poorly understood, representing the novelty of this study in the current literature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!