Recent studies from mountainous areas of small spatial extent (<2500 km(2) ) suggest that fine-grained thermal variability over tens or hundreds of metres exceeds much of the climate warming expected for the coming decades. Such variability in temperature provides buffering to mitigate climate-change impacts. Is this local spatial buffering restricted to topographically complex terrains? To answer this, we here study fine-grained thermal variability across a 2500-km wide latitudinal gradient in Northern Europe encompassing a large array of topographic complexities. We first combined plant community data, Ellenberg temperature indicator values, locally measured temperatures (LmT) and globally interpolated temperatures (GiT) in a modelling framework to infer biologically relevant temperature conditions from plant assemblages within <1000-m(2) units (community-inferred temperatures: CiT). We then assessed: (1) CiT range (thermal variability) within 1-km(2) units; (2) the relationship between CiT range and topographically and geographically derived predictors at 1-km resolution; and (3) whether spatial turnover in CiT is greater than spatial turnover in GiT within 100-km(2) units. Ellenberg temperature indicator values in combination with plant assemblages explained 46-72% of variation in LmT and 92-96% of variation in GiT during the growing season (June, July, August). Growing-season CiT range within 1-km(2) units peaked at 60-65°N and increased with terrain roughness, averaging 1.97 °C (SD = 0.84 °C) and 2.68 °C (SD = 1.26 °C) within the flattest and roughest units respectively. Complex interactions between topography-related variables and latitude explained 35% of variation in growing-season CiT range when accounting for sampling effort and residual spatial autocorrelation. Spatial turnover in growing-season CiT within 100-km(2) units was, on average, 1.8 times greater (0.32 °C km(-1) ) than spatial turnover in growing-season GiT (0.18 °C km(-1) ). We conclude that thermal variability within 1-km(2) units strongly increases local spatial buffering of future climate warming across Northern Europe, even in the flattest terrains.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gcb.12129DOI Listing

Publication Analysis

Top Keywords

local temperatures
4
temperatures inferred
4
inferred plant
4
plant communities
4
communities strong
4
strong spatial
4
spatial buffering
4
buffering climate
4
climate warming
4
warming northern
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!