Spanish honeys protect against food mutagen-induced DNA damage.

J Sci Food Agric

Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, E-28040 Madrid, Spain.

Published: September 2013

Background: Honey contains a variety of polyphenols and represents a good source of antioxidants, while the human diet often contains compounds that can cause DNA damage. The present study investigated the protective effect of three commercial honey samples of different floral origin (rosemary, heather and heterofloral) from Madrid Autonomic Community (Spain) as well as an artificial honey on DNA damage induced by dietary mutagens, using a human hepatoma cell line (HepG2) as in vitro model system and evaluation by the alkaline single-cell gel electrophoresis or comet assay.

Results: Rosemary, heather and heterofloral honeys protected against DNA strand breaks induced by N-nitrosopyrrolidine (NPYR), benzo(a)pyrene (BaP) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), but none of the honey samples tested prevented DNA strand breaks induced by N-nitrosodimethylamine (NDMA). Heterofloral and heather (unifloral) honeys with higher phenolic content were most effective in protecting HepG2 cells against DNA damage induced by food mutagens. Heterofloral honey was more protective against NPYR and BaP, while heather honey was more protective against PhIP. Artificial honey did not show a protective effect against DNA damage induced by any of the food mutagens tested, indicating that the protective effects of honeys could not be due to their sugar components.

Conclusion: The results suggest that the protective effect of three kinds of Spanish honey of different floral origin could be attributed in part to the phenolics present in the samples. Honeys with higher phenolic content, i.e. heather and heterofloral honeys, were most effective in protecting against food mutagen-induced DNA damage in HepG2 cells. In addition, a possible synergistic effect between other minor honey components could also be involved.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jsfa.6129DOI Listing

Publication Analysis

Top Keywords

dna damage
24
heather heterofloral
12
damage induced
12
honey protective
12
honey
9
food mutagen-induced
8
dna
8
mutagen-induced dna
8
protective three
8
honey samples
8

Similar Publications

Purpose: To investigate potential modes of programmed cell death in the lens epithelial cells (LECs) of patients with early age-related cortical cataract (ARCC) and to explore early-stage intervention strategies.

Methods: Anterior lens capsules were collected from early ARCC patients for comprehensive analysis. Ultrastructural examination of LECs was performed using transmission electron microscopy.

View Article and Find Full Text PDF

Infertility affects 10-15% of couples worldwide, with male factors accounting for half of cases. Environmental, behavioral, and genetic problems contribute to spermatogenic failure in 30% of idiopathic male infertility cases. Other factors, such as oxidative stress (OS), cause impaired spermatogenesis, abnormal sperm morphology, and reduced motility, eventually triggering male infertility.

View Article and Find Full Text PDF

Purpose: More active high-dose chemotherapy (HDC) regimens are needed for autologous stem-cell transplantation (ASCT) for refractory lymphomas. Seeking HDC enhancement with a poly(ADP-ribose) polymerase (PARP) inhibitor, we observed marked synergy between olaparib and vorinostat/gemcitabine/busulfan/melphalan (GemBuMel) against lymphoma cell lines, mediated by inhibition of DNA damage repair. Our preclinical work led us to clinically study olaparib/vorinostat/GemBuMel with ASCT.

View Article and Find Full Text PDF

Loss of HNRNPK During Cell Senescence Linked to Reduced Production of CDC20.

Mol Cell Biol

January 2025

Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA.

Cellular senescence is a complex biological response to sublethal damage. The RNA-binding protein HNRNPK was previously found to decrease prominently during senescence in human diploid fibroblasts. Here, analysis of the mechanisms leading to reduced HNRNPK abundance revealed that in cells undergoing senescence, mRNA levels declined transcriptionally and full-length HNRNPK protein was progressively lost, while the abundance of a truncated HNRNPK increased.

View Article and Find Full Text PDF

Discovery of WDR5-MLL1 and HDAC Dual-Target Inhibitors for the Treatment of Acute Myeloid Leukemia.

J Med Chem

January 2025

Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.

Targeting the WDR5-MLL1 protein-protein interaction (PPI) is considered to be an effective approach for the treatment of MLL-rearranged leukemia. However, interfering with WDR5-MLL1 PPI reduces methylated H3K4 levels and induces a decline in acetylated H3 levels, which may contribute to the suboptimal cellular efficacy of WDR5 inhibitors. We observed that cotreatment with WDR5-MLL1 PPI and HDAC inhibitors augmented the antiproliferative effect in MV-4-11 cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!