The photoprotein aequorin is a calcium-dependent bioluminescent enzyme which is most widely used in biotechnology processes, but this protein is susceptible to aggregation and proteolysis degradation. Various additives such as polyols are known to enhance the stability of proteins and protect them in native folded and functional state. In this work, for study of aequorin stability, the histidine-tagged apoaequorin was expressed in Escherichia coli and purified by nickel chelate affinity chromatography. Kinetics of light emission of purified aequorin upon addition of Ca(2+) showed a linear dependency on aequorin concentration. Furthermore, the effect of some stabilisers, such as glycerol, glucose, lactose, terehalose, sucrose and sorbitol on thermostability of recombinant aequorin was measured. Results indicate that the recombinant aequorin is very stable in phosphate buffer including 30 mM sorbitol, since after heat shock of 30 min at different temperatures, a slight decrease in activity was observed. However, flexibility and exposure of tryptophan residues of aequorin to the solvent, in the presence and absence of stabilisers, with respect to fluorescence quenching by acrylamide, indicated identical characterisation. In addition, according to limited proteolysis of aequorin demonstrating that this enzyme is sensitive to proteases as in the presence of 2 ng/ml of protease, aequorin was completely digested. In conclusion, sorbitol increases stability of aequorin with high photoactivity and not effect for flexibility and limited proteolysis of this photoprotein.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12010-013-0096-3 | DOI Listing |
Molecules
November 2024
Doctoral School of Biology, Faculty of Biology, University of Bucharest, Splaiul Independenței 91-95, 050095 Bucharest, Romania.
Recombinant aequorin has been extensively used in mammalian and plant systems as a powerful tool for calcium monitoring. While aequorin has also been widely applied in yeast research, a notable gap exists in the literature regarding comprehensive reviews of these applications. This review aims to address that gap by providing an overview of how aequorin has been used to explore calcium homeostasis, signaling pathways, and responses to stressors, heavy metals, and toxic compounds in .
View Article and Find Full Text PDFACS Appl Bio Mater
December 2024
Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361005, P. R. China.
Superoxide anion (O) is a highly reactive oxygen species (ROS) within tumor cells, and its abnormal concentrations can lead to various diseases such as cancer, inflammation, and premature aging disorders. Here, we obtained a series of bioluminescence resonance energy transfer (BRET) systems that can be used for sensitive and specific detection of O by varying the type and reaction time of quantum dots (QDs) and combining them with different concentrations of recombinant aequorin. Among them, the recombinant aequorin-conjugated CdTe/CdSe QDs had the highest conjugation efficiency as the Aeq-QD BRET sensor, which has a remarkable energy transfer efficiency of 35.
View Article and Find Full Text PDFProtein Expr Purif
August 2024
Hamamatsu Photonics, K.K. Systems Division, Joko-cho, Hamamatsu, Shizuoka, 431-3196, Japan.
Clytin II (CLII) is a Ca-binding photoprotein and has been identified as an isotype of clytin I (CLI). CLII consists of apoCLII (an apoprotein) and 2-peroxide of coelenterazine (an adduct of molecular oxygen to coelenterazine), which is identical to the widely used Ca-binding photoprotein, aequorin (AQ). However, CLII triggered by Ca exhibits a 4.
View Article and Find Full Text PDFBiochem Biophys Res Commun
October 2022
Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia. Electronic address:
The bright bioluminescence of ctenophores inhabiting the oceans worldwide is caused by light-sensitive Ca-regulated photoproteins. By now, the cDNAs encoding photoproteins from the four different ctenophore species have been cloned and the recombinant proteins have been characterized to some extent. In this work, we report on the specific activity and the quantum yield of bioluminescence reaction as well as the absorbance characteristics of high-purity recombinant berovin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!