Purpose: Diabetes mellitus is an important aetiological factor in intervertebral disc degeneration. The disappearance of notochordal cells in the nucleus pulposus is thought to be the starting point for intervertebral disc degeneration. A cellular effect of diabetes mellitus on apoptosis of notochordal cells and intervertebral disc degeneration has been recently reported. However, how the duration and severity of diabetes mellitus affects viability of notochordal cells and intervertebral disc degeneration is still unknown .
Methods: Rat notochordal cells were isolated, cultured, and placed in either 10 % foetal bovine serum (FBS) (normal control) or 10 % FBS plus three different high glucose concentrations (0.1 M, 0.2 M, and 0.4 M) (experimental conditions) for one, three, five and seven days, respectively. We identified and quantified the degree of proliferation and apoptosis, caspase activities, and cleavages of Bid and cytochrome-c. In addition, we examined the cells for expression of matrix metalloproteinases (MMPs) and their tissue inhibitors of metalloproteinases (TIMPs).
Results: Each three high glucose concentrations significantly decreased proliferation and increased apoptosis of notochordal cells from culture days one to seven in a dose-dependent manner. Compared with those of 10 % FBS, caspase-9 and -3 activities and cleavage of Bid and cytochrome-c were significantly increased in each three high glucose concentrations, accompanied by increased expression of MMP-1, -2, -3, -7, -9, and -13 and TIMP-1 and -2.
Conclusions: High glucose concentration significantly decreased proliferation and increased apoptosis of notochordal cells via the intrinsic pathway with dose- and time-dependent effects. We also found that expression of MMPs and TIMPs was increased with dose- and time-dependent effects. Therefore, these results suggest that aggressive glucose control from an early stage of diabetes mellitus should be recommended to prevent or limit intervertebral disc degeneration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3664153 | PMC |
http://dx.doi.org/10.1007/s00264-013-1836-2 | DOI Listing |
Gene
January 2025
Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Kitaku, Tsushimanaka, Okayama 700-8530, Japan; Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Kitaku, Tsushimanaka, Okayama 700-8530, Japan. Electronic address:
Bird contour feathers exhibit a complex hierarchical structure composed of a rachis, barbs, and barbules, with barbules playing a crucial role in maintaining feather structure and function. Understanding the molecular mechanisms underlying barbule formation is essential for advancing our knowledge of avian biology and evolution. In this study, we identified a novel gene, pennaceous barbule cell factor (PBCF), using microarray analysis, RT-PCR, and in situ hybridization.
View Article and Find Full Text PDFCells
December 2024
Department of Surgery, Divisions of Orthopaedic and Neurosurgery, University of Toronto, 661 University Ave., Suite 13-1387, Toronto, ON M5G 0B7, Canada.
Pain and disability secondary to degenerative disc disease continue to burden the healthcare system, creating an urgent need for effective, disease-modifying therapies. Contemporary research has identified potential therapies that include protein-, cellular- and/or matrix-related approaches; however, none have yet achieved a meaningful clinical impact. The tissue-specific realities of the intervertebral disc create considerable therapeutic challenges due to the disc's location, compartmentalization, hypovascularization and delicate physiological environment.
View Article and Find Full Text PDFBone Res
January 2025
State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
Intervertebral disc degeneration (IDD), osteoarthritis (OA), and osteoporosis (OP) are common musculoskeletal disorders (MSDs) with similar age-related risk factors, representing the leading causes of disability. However, successful therapeutic development and translation have been hampered by the lack of clinically-relevant animal models. In this study, we investigated the potential suitability of the tree shrew, a small mammal with a close genetic relationship to primates, as a new animal model for MSDs.
View Article and Find Full Text PDFJ Cytol
November 2024
Department of Pathology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India.
Background And Aims: Chordomas are rare notochordal tumors. They are suitable candidates for squash smear cytology (SSC) owing to their gelatinous consistency and destructive nature. SSC is an important tool for making a quick intra-operative preliminary diagnosis and taking real-time surgical and further management decisions.
View Article and Find Full Text PDFJOR Spine
December 2024
Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health University of Manchester, Manchester Academic Health Sciences Centre Manchester UK.
Background: Notochordal cells (NCs) present in the nucleus pulposus (NP) of the developing human intervertebral disc (IVD) disappear during the first decade of life. This loss coincides with the onset of IVD degeneration, therefore these cells are hypothesized to be important in NP homeostasis. Putative NC-derived (CD24) and progenitor (TIE2/GD2) cell sub-populations have previously been identified in the adult human NP, but their characteristics have yet to be compared.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!