Natural mineral tetrahedrite as a direct source of thermoelectric materials.

Phys Chem Chem Phys

Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA.

Published: April 2013

We show that a simple powder processing procedure using natural mineral tetrahedrite, the most widespread sulfosalt on earth, provides a low cost, high throughput means of producing thermoelectric materials with high conversion efficiency. These earth-abundant thermoelectrics can open the door to many new and inexpensive power generation opportunities.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3cp50920fDOI Listing

Publication Analysis

Top Keywords

natural mineral
8
mineral tetrahedrite
8
thermoelectric materials
8
tetrahedrite direct
4
direct source
4
source thermoelectric
4
materials simple
4
simple powder
4
powder processing
4
processing procedure
4

Similar Publications

Wildfire ashes: evaluating threats on the Pantanal wetland reserve (Mato Grosso, Brazil) using ecotoxicological tests.

Environ Sci Pollut Res Int

January 2025

Program in Biodiversity and Nature Conservation (UFJF), Institute of Biological Sciences (ICB), Federal University of Juiz de Fora (UFJF), University Campus, Martelos, Juiz de Fora, Minas Gerais, CEP, 36036-900, Brazil.

In 2020, the largest continuous wetland area on the planet, the Brazilian Pantanal, experienced an unprecedented fire that affected the entire ecosystem. Our goal was to elucidate the effects of ash presence following the fire events. We quantified the impact of ashes, collected in four Conservation Units, on soil, water, and atmosphere.

View Article and Find Full Text PDF

Influencing factors and quantitative prediction of gas content of deep marine shale in Luzhou block.

Sci Rep

January 2025

State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China.

The exploration and development of deep marine shale gas has made significant breakthroughs, but factors influencing gas contents of deep marine shale are elusive, and quantitative prediction methods of gas content needs to be refined urgently. In this study, the deep marine shale of Longmaxi Formation in Luzhou area was taken as an example, vitrinite reflectance analysis, kerogen microscopy experiment, TOC content analysis, mineral composition analysis, gas content measurement, isothermal adsorption experiment, physical property analysis and argon ion polishing scanning electron microscopy experiment were carried out to find out factors affecting the gas content of deep marine shale, and a gas content prediction model has been worked out. Conclusions below have been reached: the content of adsorbed gas is mainly affected by Ro, TOC content, porosity, water saturation, clay mineral content, formation temperature and pressure; the content of free gas is mainly controlled by porosity, water saturation, formation temperature and pressure; according to the prediction models, the adsorbed gas content, free gas content and total gas content of each well were quantitatively calculated, and the study area was divided into Class I (with a total gas content ≥ 11 m/t), Class II (with a total gas content between 9 m/t and 11 m/t), and Class III (with a total gas content < 9 m/t) gas-bearing areas.

View Article and Find Full Text PDF

The conversion of water hyacinth into biochar offers a sustainable solution to mitigate its proliferation and enhances its potential as a soil amendment for agriculture. This study examined the physicochemical properties of water hyacinth biochar (WHBC) and its impact on soil fertility. Water hyacinth (Eichhornia crassipes) was pyrolyzed at 300 °C for 40 minute with restricted airflow (2-3 m/s), producing biochar with desirable properties and a yield of 44.

View Article and Find Full Text PDF

[Construction and development prospect of evaluation indicator system for sustainable utilization of traditional Chinese medicine resources based on DPSIR model].

Zhongguo Zhong Yao Za Zhi

December 2024

Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Translational Chinese Medicine Key Laboratory of Sichuan Province, Key Laboratory of Biological Evaluation of TCM Quality of the State Administration of Traditional Chinese Medicine, Sichuan Institute for Translational Chinese Medicine Chengdu 610041, China.

Traditional Chinese medicine(TCM) resources refer to the total reserves of plants, animals, and minerals that can be used as raw materials of TCM(including Chinese medicial materials, TCM decoction pieces, TCM dispensing granules, traditional Chinese patent medicine, and TCM hospital preparation) and folk herbal medicine, which served as the material basis of inheritance, innovation, and development of TCM. In recent years, the sustainable utilization of TCM resources has received high attention and acquired a series of significant achievements in resource survey, quality evaluation, resource protection, innovative technology, and development and utilization, which effectively promoted the sustainable utilization of TCM resources and high-quality development of the TCM industry. The most urgent issue currently is to shift the focus of the research on the sustainable utilization of TCM resources from a sustainable utilization technology system to a sustainable utilization evaluation indicator system.

View Article and Find Full Text PDF

Novel Foamed Magnesium Phosphate Antimicrobial Bone Cement for Bone Augmentation.

J Biomed Mater Res B Appl Biomater

January 2025

Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China.

In dental implant surgery, infection is identified as the primary factor contributing to the failure of bone grafts. There is an urgent need to develop bone graft materials possessing antibacterial characteristics to facilitate bone regeneration. Magnesium phosphate bone cement (MPC) is highly desirable for bone regeneration due to its favorable biocompatibility, plasticity, and osteogenic capabilities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!