Aims: In November through December 2007, the drinking water distribution system in the town of Nokia, Finland, was contaminated with treated sewage effluent that resulted in a large gastroenteritis outbreak in the community. The aim of the present study was to investigate if the contaminated water in this outbreak was also a potential source of Clostridium difficile infections.

Methods: Samples from the contaminated tap water and treated sewage effluent were collected. Stool samples from a portion of patients that fell ill during the outbreak were examined for C. difficile. PCR ribotyping was performed on toxin positive C. difficile isolates and the genetic profiles of the water and patient isolates were compared.

Results: Twelve toxin-positive C. difficile isolates were found in water samples: five from contaminated tap water and seven from treated sewage effluent. Among these, four and five distinct PCR ribotype profiles were identified, respectively. Four PCR ribotype profiles were found among nine human faecal C. difficile isolates. Two isolates, one from tap water and one from a patient, had an indistinguishable PCR ribotype profile.

Conclusions: Our findings demonstrate for the first time C. difficile contamination of a tap water distribution system and waterborne transmission of toxigenic C. difficile seems possible.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1403494813481648DOI Listing

Publication Analysis

Top Keywords

tap water
20
water distribution
12
distribution system
12
treated sewage
12
sewage effluent
12
difficile isolates
12
pcr ribotype
12
water
9
clostridium difficile
8
difficile contamination
8

Similar Publications

Remarkable improvement in drilling fluid properties with graphitic-carbon nitride for enhanced wellbore stability.

Heliyon

January 2025

Department of Chemical Engineering, School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan.

This study examines the viability of using graphitic-Carbon Nitride (g-CN) nanomaterial as shale stabilizer drilling fluid additive having applications in the oil and gas wells drilling. Shale stability is important especially when drilling horizontal and extended reach wells with water-based muds (WBM) to tap unconventional reservoirs namely shale oil and shale gas. For this study, the g-CN nanomaterial was produced by melamine pyrolysis, and characterized by X-Ray Diffraction, Scanning Electron Microscopy and Fourier Transform Infrared spectroscopy techniques.

View Article and Find Full Text PDF

Background/purpose: Daily flushing of dental unit waterlines is important for infection control. However, the effect of flushing on water quality management in portable dental units (PDUs) for mobile dental treatments remains unclear. In this study, we aimed to investigate the factors affecting the effectiveness of PDU flushing.

View Article and Find Full Text PDF

Designing molecular receptors that bind anions in water is a significant challenge, and an even greater difficulty lies in using these receptors to remove anions from water without resorting to the hazardous liquid-liquid extraction approach. We here demonstrate an effective and synthetically simple strategy toward these goals by exploiting ion-pair assembly of macrocycles. Our anion binding ensemble consists of an octa-chloro tetra-urea macrocyclic anion receptor (ClTU), which forms water-dispersible aggregates, and a tetra-cationic fluorescent dye 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin (TMPyP4), which provides Coulombic stabilization and fluorescence reporting of anion binding in an ion-pair assembly.

View Article and Find Full Text PDF

Background: The buildup of methylparaben (MP), a broad-spectrum antimicrobial preservative with endocrine-disrupting properties, in environmental sources, especially aquatic systems, has become a significant concern due to its adverse health effects, including allergic reactions, promoting the risk of developing cancer, and inducing reproductive disorders. Hence, introducing inexpensive and easy-to-use monitoring devices for rapid, selective, and sensitive detection and quantification of MP is highly desirable. In this context, electrochemical platforms have proven to be attractive options due to their remarkable features, such as ease of fabrication and use, short response time, and acceptable sensitivity, accuracy, and selectivity.

View Article and Find Full Text PDF

The steady state of a water distribution system abides by the laws of mass and energy conservation. Hydraulic solvers, such as the one used by EPANET approach the simulation for a given topology with a Newton-Raphson algorithm. However, iterative approximation involves a matrix inversion which acts as a computational bottleneck and may significantly slow down the process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!