Upon exposure to platinum analogs, mesenchymal stem cells were recently found to excrete minute amounts of specific lipid mediators that induce chemotherapy resistance. One of these lipids is hexadeca-4,7,10,13-tetraenoic acid (FA(16:4)n-3). Importantly, FA(16:4)n-3 is present in high concentrations in certain fish oils and algae and oral intake of these products also potently induced chemotherapy resistance. These findings suggested that certain foods could negatively affect clinical chemotherapy treatment. In order to allow further study of the relation between FA(16:4)n-3 and clinical chemotherapy resistance, a method for the detection and quantification of FA(16:4)n-3 in plasma is required. Therefore, a quantification method for FA(16:4)n-3 in human and mouse plasma was developed consisting of a liquid-liquid extraction, solid phase clean-up and LC-MS/MS (MRM) analysis. The method was fully validated over a period of three weeks according to the standard protocols and requirements. The linearity range of the method is 1-100 nmol/L (r(2)>0.99) using deuterated FA(16:3)n-3 as an internal standard. The limits of quantification and detection are 1.0 nmol/L and 0.8 nmol/L, respectively. Recoveries for spiked concentrations range from 103 to 108%. The intra-day and inter-day mean precision amounts to 98-106% and 100-108%, respectively. No significant loss of FA(16:4)n-3 is observed upon storage at -80 °C. The developed assay for the detection and quantification of FA(16:4)n-3 in human plasma is robust and reproducible. The validation parameters are within limits of acceptance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jchromb.2013.01.012 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!