A polymerase chain reaction (PCR) based method of adding a single-stranded DNA (ssDNA) hairpin loop to one end of linear double-stranded (ds) DNA templates was developed. The loop structure serves as a fiducial marker in single molecule imaging by atomic force microscopy (AFM) and can be applied to study DNA-protein interactions. The nucleic acid end-labels allow discrimination of the polarity of the DNA template in the AFM while limiting non-specific interactions which might occur from non-nucleic acid labels. Homo-polynucleotide ssDNA loops made up of 20 base-pairs (bp) for each of the four bases (A, T, G, C) were investigated to determine the effects of sequence on template labelling. The products were produced with high efficiency and high yield with the loop readily distinguished from the dsDNA template by height and diameter in the AFM. The application of the method to study DNA transcription was investigated by firing Escherichia Coli RNA polymerase (RNAP) from a λPR promoter in the direction of the loop-labelled end. The ssDNA loops captured elongating complexes of RNAP, arresting transcription and preventing dissociation. The dual role of the loop as a polarity marker and retainer of previously active RNAP will allow mechanisms of gene expression to be studied with single molecule sensitivity by AFM. This will enable insight into molecular interactions of RNAP on single DNA templates in convergent or tandem transcription configurations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymeth.2013.03.002DOI Listing

Publication Analysis

Top Keywords

single molecule
12
single-stranded dna
8
dna-protein interactions
8
molecule imaging
8
dna templates
8
ssdna loops
8
dna
5
dna loops
4
loops fiducial
4
fiducial markers
4

Similar Publications

E-cigarette/vaping-associated lung injury (EVALI) is strongly associated with vitamin E acetate and often occurs with concomitant tetrahydrocannabinol (THC) use. To uncover pathways associated with EVALI, we examined cytokines, transcriptomic signatures, and lipidomic profiles in bronchoalveolar lavage fluid (BALF) from THC-EVALI patients. At a single center, we prospectively enrolled mechanically ventilated patients with EVALI from THC-containing products (N = 4) and patients with non-vaping acute lung injury and airway controls (N = 5).

View Article and Find Full Text PDF

The mechanism of discriminative aminoacylation by isoleucyl-tRNA synthetase based on wobble nucleotide recognition.

Nat Commun

December 2024

State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.

The faithful charging of amino acids to cognate tRNAs by aminoacyl-tRNA synthetases (AARSs) determines the fidelity of protein translation. Isoleucyl-tRNA synthetase (IleRS) distinguishes tRNA from tRNA solely based on the nucleotide at wobble position (N34), and a single substitution at N34 could exchange the aminoacylation specificity between two tRNAs. Here, we report the structural and biochemical mechanism of N34 recognition-based tRNA discrimination by Saccharomyces cerevisiae IleRS (ScIleRS).

View Article and Find Full Text PDF

Hydrogen gas (H) can be produced via entirely solar-driven photocatalytic water splitting (PWS). A promising set of organic materials for facilitating PWS are the so-called inverted singlet-triplet, INVEST, materials. Inversion of the singlet (S) and triplet (T) energies reduces the population of triplet states, which are otherwise destructive under photocatalytic conditions.

View Article and Find Full Text PDF

The known unknowns of the Hsp90 chaperone.

Elife

December 2024

Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands.

Molecular chaperones are vital proteins that maintain protein homeostasis by assisting in protein folding, activation, degradation, and stress protection. Among them, heat-shock protein 90 (Hsp90) stands out as an essential proteostasis hub in eukaryotes, chaperoning hundreds of 'clients' (substrates). After decades of research, several 'known unknowns' about the molecular function of Hsp90 remain unanswered, hampering rational drug design for the treatment of cancers, neurodegenerative, and other diseases.

View Article and Find Full Text PDF

The computational study of ligand binding to a target protein provides mechanistic insight into the molecular determinants of this process and can improve the success rate of drug design. All-atom molecular dynamics (MD) simulations can be used to evaluate the binding free energy, typically by thermodynamic integration, and to probe binding mechanisms, including the description of protein conformational dynamics. The advantages of MD come at a high computational cost, which limits its use.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!