The capture of oxidized mercury from simulated desulphurization aqueous solutions.

J Environ Manage

Instituto Nacional del Carbón (INCAR), CSIC, C/Francisco Pintado Fé, 26, 33011 Oviedo, Spain.

Published: May 2013

Elemental mercury in flue gases from coal combustion is difficult to control. However, oxidized mercury species are soluble in water and can be removed with a high degree of efficiency in wet flue gas desulphurization (WFGD) systems operating in coal combustion plants, provided that no re-emissions occur. In this article the mechanisms affecting the re-emission of oxidized mercury species in WFGD conditions via sulphite ions are discussed. The parameters studied include the operating temperature, the pH, the redox potential, the concentrations of mercury and oxygen in the flue gas and the concentration of reductive ions in the solution. The results show that temperature, pH and the concentration of mercury at the inlet of the WFGD systems are the most important factors affecting oxidized mercury removal. The results indicate that sulphite ions, not only contribute to the reduction of Hg(2+), but that they may also stabilize the mercury in the liquid fraction of the WFGD limestone slurry. Consequently, factors that increase the sulphite content in the slurry such as a low oxygen concentration promote the co-capture of mercury with sulphur.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2013.02.030DOI Listing

Publication Analysis

Top Keywords

oxidized mercury
16
mercury
9
coal combustion
8
mercury species
8
flue gas
8
wfgd systems
8
sulphite ions
8
capture oxidized
4
mercury simulated
4
simulated desulphurization
4

Similar Publications

Quantification of heavy metal exposure in a British population cohort links total mercury levels in plasma with skin tissue-specific changes in mitochondrial-related gene expression.

Sci Total Environ

January 2025

Department of Twin Research and Genetic Epidemiology, King's College London, 3-4th Floor South Wing Block D, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK. Electronic address:

Heavy metals in our direct environment have profound effects on human health and while some are essential for life, others can be toxic. In vivo studies often focus on clinical features caused by overexposure to, or by deprivation of a heavy metal. However, to understand the cellular impact of heavy metals on health, studies in healthy volunteers before symptom onset are needed.

View Article and Find Full Text PDF

Contaminants are a major cause of seafood export rejections in foreign markets and have significantly impacted consumer health. This investigation addresses the issues of metal contamination and biochemical markers in Litopenaeus vannamei from East Midnapore, West Bengal, India. The analyzed metals included vanadium (V), chromium (Cr), manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), molybdenum (Mo), silver (Ag), gallium (Ga), germanium (Ge), arsenic (As), selenium (Se), strontium (Sr), tin (Sn), cadmium (Cd), mercury (Hg), and lead (Pb), using Inductively Coupled Plasma Mass Spectrometry (ICP-MS).

View Article and Find Full Text PDF

Titanium dioxide nanoparticles (TiONPs) as an emerging pollutant in aquatic environments can interact with metals reducing or enhancing their toxicity in these environments. This study examined and compared the toxic effects of mercury ions (Hg ions) on immobilization percentage, fatty acid profile, and oxidative stress of nauplii, individually (Hg) and simultaneously in the presence of 0.10 mg.

View Article and Find Full Text PDF

Mangrove ecosystem has attracted global attention as a hotspot for mercury (Hg) methylation. Although numerous biotic and abiotic parameters have been reported to influence methylmercury (MeHg) production in sediments, the key factors determining the elevated MeHg levels in mangrove wetlands have not been well addressed. In this study, Hg levels in the sediments from different habitats (mudflats, mangrove fringe, and mangrove interior) in the Futian mangrove wetland were investigated, aiming to characterize the predominant factors affecting the MeHg production and distinguish the key microbial taxa responsible for Hg methylation.

View Article and Find Full Text PDF

The main categories of transition metal-mercury heterometallic compounds are briefly summarized. The attention is focused on complexes and clusters where the {Hg-Y} fragment, where Y represents a halide atom, interacts with transition metals. Most of the structurally characterized derivatives are organometallic compounds where the transition metals belong to the Groups 6, 8, 9 and 10.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!