This work introduces two major changes to the conventional protocol for designing plastic antibodies: (i) the imprinted sites were created with charged monomers while the surrounding environment was tailored using neutral material; and (ii) the protein was removed from its imprinted site by means of a protease, aiming at preserving the polymeric network of the plastic antibody. To our knowledge, these approaches were never presented before and the resulting material was named here as smart plastic antibody material (SPAM). As proof of concept, SPAM was tailored on top of disposable gold-screen printed electrodes (Au-SPE), following a bottom-up approach, for targeting myoglobin (Myo) in a point-of-care context. The existence of imprinted sites was checked by comparing a SPAM modified surface to a negative control, consisting of similar material where the template was omitted from the procedure and called non-imprinted materials (NIMs). All stages of the creation of the SPAM and NIM on the Au layer were followed by both electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). AFM imaging was also performed to characterize the topography of the surface. There are two major reasons supporting the fact that plastic antibodies were effectively designed by the above approach: (i) they were visualized for the first time by AFM, being present only in the SPAM network; and (ii) only the SPAM material was able to rebind to the target protein and produce a linear electrical response against EIS and square wave voltammetry (SWV) assays, with NIMs showing a similar-to-random behavior. The SPAM/Au-SPE devices displayed linear responses to Myo in EIS and SWV assays down to 3.5 μg/mL and 0.58 μg/mL, respectively, with detection limits of 1.5 and 0.28 μg/mL. SPAM materials also showed negligible interference from troponin T (TnT), bovine serum albumin (BSA) and urea under SWV assays, showing promising results for point-of-care applications when applied to spiked biological fluids.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2013.02.012DOI Listing

Publication Analysis

Top Keywords

plastic antibody
12
swv assays
12
smart plastic
8
antibody material
8
spam
8
material spam
8
spam tailored
8
printed electrodes
8
plastic antibodies
8
imprinted sites
8

Similar Publications

Chimeric antigen receptor (CAR)-T cell therapies have revolutionized the landscape of cancer treatment, in particular in the context of hematologic malignancies. However, for solid tumors that lack tumor-specific antigens, CAR-T cells can infiltrate and attack nonmalignant tissues expressing the CAR target antigen, leading to on-target, off-tumor toxicity. Severe on-target, off-tumor toxicities have been observed in clinical trials of CAR-T therapy for solid tumors, highlighting the need to address this issue.

View Article and Find Full Text PDF

Evaluating CK20 and MCPyV Antibody Clones in Diagnosing Merkel Cell Carcinoma.

Endocr Pathol

January 2025

Department of Pathology, Istanbul Faculty of Medicine, Istanbul University, Millet Caddesi, Fatih, Istanbul, 34093, Turkey.

Merkel cell carcinoma (MCC) is diagnosed through histopathological and immunohistochemical examination of biopsies from skin or other organs. Its distinguishing features include perinuclear dot-like staining with Cytokeratin 20 (CK20) and detection of Merkel cell polyomavirus (MCPyV) using various methods. However, CK20 and MCPyV negative MCC cases have been reported at varying rates.

View Article and Find Full Text PDF

For use in prevention and treatment, HIV-1 broadly neutralizing antibodies (bnAbs) have to overcome Env conformational heterogeneity of viral quasispecies and neutralize with constant high potency. Comparative analysis of neutralization data from the CATNAP database revealed a nuanced relationship between bnAb activity and Env conformational flexibility, with substantial epitope-specific variation of bnAb potency ranging from increased to decreased activity against open, neutralization-sensitive Env. To systematically investigate the impact of variability in Env conformation on bnAb potency we screened 126 JR-CSF point mutants for generalized neutralization sensitivity to weakly neutralizing antibodies (weak-nAbs) depending on trimer opening and plasma from people with chronic HIV-1 infection.

View Article and Find Full Text PDF

Emerging Delivery Systems for Enabling Precision Nucleic Acid Therapeutics.

ACS Nano

January 2025

Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.

Nucleic acid therapeutics represent a highly promising treatment approach in modern medicine, treating diseases at the genetic level. However, these therapeutics face numerous challenges in practical applications, particularly regarding their stability, effectiveness, cellular uptake efficiency, and limitations in delivering them specifically to target tissues. To overcome these obstacles, researchers have developed various innovative delivery systems, including viral vectors, lipid nanoparticles, polymer nanoparticles, inorganic nanoparticles, protein carriers, exosomes, antibody oligonucleotide conjugates, and DNA nanostructure-based delivery systems.

View Article and Find Full Text PDF

Targeting ROR2 homooligomerization disrupts ROR2-dependent signaling and suppresses stem-like cell properties of human breast adenocarcinoma.

iScience

January 2025

Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, School of Basic Medical Sciences, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.

Breast cancer stem-like cells (CSCs) are enriched following treatment with chemotherapy, and posited as having a high level of plasticity and enhanced tumor-initiation capacity, which can enable cancer relapse. Here, we show that such features are shared by breast cancer (BCA) cells that express receptor tyrosine kinase-like orphan receptor (ROR2), which is expressed primarily during embryogenesis and by various cancers. We find that Wnt5a can induce ROR2 homooligomerization to activate noncanonical Wnt signaling and enhance tumor-initiation capacity of BCA cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!