A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Superb resolution and contrast of transmission electron microscopy images of unstained biological samples on graphene-coated grids. | LitMetric

Background: In standard transmission electron microscopy (TEM), biological samples are supported on carbon films of nanometer thickness. Due to the similar electron scattering of protein samples and graphite supports, high quality images with structural details are obtained primarily by staining with heavy metals.

Methods: Single-layered graphene is used to support the protein self-assemblies of different molecular weights for qualitative and quantitative characterizations.

Results: We show unprecedented high resolution and contrast images of unstained samples on graphene on a low-end TEM. We show for the first time that the resolution and contrast of TEM images of unstained biological samples with high packing density in their native states supported on graphene can be comparable or superior to uranyl acetate-stained TEM images.

Conclusion: Our results demonstrate a novel technique for TEM structural characterization to circumvent the potential artifacts caused by staining agents without sacrificing image resolution or contrast, and eliminate the need for toxic metals. Moreover, this technique better preserves sample integrity for quantitative characterization by dark-field imaging with reduced beam damage.

General Significance: This technique can be an effective alternative for bright-field qualitative characterization of biological samples with high packing density and those not amenable to the standard negative staining technique, in addition to providing high quality dark-field unstained images at reduced radiation damage to determine quantitative structural information of biological samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbagen.2013.03.002DOI Listing

Publication Analysis

Top Keywords

biological samples
20
resolution contrast
16
images unstained
12
transmission electron
8
electron microscopy
8
unstained biological
8
high quality
8
samples high
8
high packing
8
packing density
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!