Objective: Destructive techniques such as histology and biochemical assays are still regarded the gold standard to study the effects of novel therapies or etiologic aspects of osteoarthritis in small animal models. These techniques are time-consuming and require many animals. Multi-pinhole single photon emission computed tomography (MPH-SPECT) is a relatively novel, high resolution imaging technique which enables assessment of biological processes in real-time and thus it might provide a good substitute for destructive assessment techniques.
Design: For this study, we assessed mono-iodoacetate (MIA) induced osteoarthritic knees in 18 rats. The animals were scanned using MPH-SPECT/CT and a diphosphonate labelled with 99m-technetium as the radioactive tracer to monitor subchondral bone turnover (bone-scan) at 2 (n = 18), 14 (n = 12) and 42 (n = 6) days after injection of MIA. At each time-point six animals were sacrificed and also assessed with high-resolution micro-computed tomography (μCT) and histology.
Results: At 2 days after injection of MIA, the MPH-SPECT/CT already showed elevated bone turnover in the affected knee, whereas with histology and μCT we could not detect clear alterations at all this time-point. The increase in bone turnover induced by MIA was elevated further at 14 and 42 days after injection. At this time alterations on histology and μCT scanning also became visible.
Conclusions: MPH-SPECT/CT proved to be a highly sensitive assessment technique for experimental osteoarthritis in small animal models, detecting real-time changes in bone turnover at a very early time point, which might make it a valuable technique to measure the direct effect of interventional strategies on osteoarthritis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.joca.2013.03.004 | DOI Listing |
PLoS One
January 2025
Department of Pharmacy Practice, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia.
Hydroxyapatite (HA) is widely used as a bone graft. However, information on the head-to-head osteoinductivity and in vivo performance of micro- and nanosized natural and synthetic HA is still lacking. Here, we fabricated nanosized bovine HA (nanoBHA) by using a wet ball milling method and compared its in vitro and in vivo performance with microsized BHA, nanosized synthetic HA (nanoHA), and microsized synthetic HA (HA).
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
February 2025
Bioassays and Cellular Dynamics Lab, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP: São Paulo State University, São Paulo, Brazil.
Calcium phosphates, notably monetite, are valued biomaterials for bone applications owing to their osteogenic properties and rapid uptake by bone cells. This study investigates the enhancement of these properties through Cobalt doping, which is known to induce hypoxia and promote bone cell differentiation. Heat treatments at 700°C, 900°C, and 1050°C are applied to both monetite and Cobalt-doped monetite, facilitating the development of purer, more crystalline phases with varied particle sizes and optimized cellular responses.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
February 2025
Department of Prosthodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq.
While polyetherketoneketone is a high-performance thermoplastic polymer, its hydrophobicity and inertness limit bone adhesion. This study aimed to evaluate a novel PEKK/CaSiO/TeO nanocomposite, comparing it to PEKK/15 wt.% CaSiO and PEKK groups.
View Article and Find Full Text PDFInt J Cancer
January 2025
Department of Medical Oncology, Shanghai East Hospital of Tongji University, Shanghai, China.
This study aimed to assess the efficacy and safety of three dosing regimens of JMT103 in patients with bone metastases from solid tumors. Eligible patients were randomly assigned to receive JMT103 subcutaneously, 120 mg every 4 weeks (Cohort 1), 120 mg every 8 weeks (Cohort 2), or 180 mg every 8 weeks (Cohort 3) for up to 49 weeks. The primary endpoint was change from baseline to Week 13 in creatinine-adjusted urinary N-telopeptide (uNTx/Cr).
View Article and Find Full Text PDFMetabolites
January 2025
Department of Osteoporosis, Metabolic Bone Disease and Genetic Research Unit, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
: This study aimed to capture the early metabolic changes before osteoporosis occurs and identify metabolomic biomarkers at the osteopenia stage for the early prevention of osteoporosis. : Metabolomic data were generated from normal, osteopenia, and osteoporosis groups with 320 participants recruited from the Nicheng community in Shanghai. We conducted individual edge network analysis (iENA) combined with a random forest to detect metabolomic biomarkers for the early warning of osteoporosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!