Environmentally-relevant concentrations of atrazine induce non-monotonic acceleration of developmental rate and increased size at metamorphosis in Rhinella arenarum tadpoles.

Ecotoxicol Environ Saf

Instituto de Recursos Biológicos, Centro Nacional de Investigaciones Agropecuarias (CNIA), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina.

Published: June 2013

Despite of the various studies reporting on the subject, anticipating the impacts of the widely-used herbicide atrazine on anuran tadpoles metamorphosis remains complex as increases or decreases of larval period duration are almost as frequently reported as an absence of effect. The aim of the present study was to examine the effects of environmentally-relevant concentrations of atrazine (0.1, 1, 10, 100, and 1000μg/L) on the timings of metamorphosis and body size at metamorphosis in the common South American toad, Rhinella arenarum (Anura: bufonidae). None of the atrazine concentrations tested significantly altered survival. Low atrazine concentrations in the range of 1-100μg/L were found to accelerate developmental rate in a non-monotonic U-shaped concentration-response relationship. This observed acceleration of the metamorphic process occurred entirely between stages 25 and 39; treated tadpoles proceeding through metamorphosis as control animals beyond this point. Together with proceeding through metamorphosis at a faster rate, tadpoles exposed to atrazine concentrations in the range of 1-100μg/L furthermore transformed into significantly larger metamorphs than controls, the concentration-response curve taking the form of an inverted U in this case. The no observed effect concentration (NOEC) was 0.1μg atrazine/L for both size at metamorphosis and timings of metamorphosis. Tadpoles exposed to 100μg/L 17β-estradiol presented the exact same alterations of developmental rate and body size as those treated with 1, 10 and 100μg/L of atrazine. Elements of the experimental design that facilitated the detection of alterations of metamorphosis at low concentrations of atrazine are discussed, together with the ecological significance of those findings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2013.01.019DOI Listing

Publication Analysis

Top Keywords

concentrations atrazine
12
developmental rate
12
size metamorphosis
12
atrazine concentrations
12
metamorphosis
9
environmentally-relevant concentrations
8
atrazine
8
rhinella arenarum
8
timings metamorphosis
8
body size
8

Similar Publications

The presence of traces of herbicides in ground and surface waters can have adverse impacts on humans and the environment. Therefore, developing a highly selective and reusable adsorbent for monitoring water quality has become important. This article describes smart green molecularly imprinted polymers (MIPs) as selective sorbents of S-metolachlor herbicide for solid phase extraction (SPE).

View Article and Find Full Text PDF

There is growing interest in transcriptomic points of departure (tPOD) values from in vitro experiments as an alternative to animal test method. The study objective was to calculate tPODs in rainbow trout gill cells (RTgill-W1 following OECD 249) exposed to pesticides, and to evaluate how these values compare to fish acute and chronic toxicity data. Cells were exposed to one fungicide (chlorothalonil), ten herbicides (atrazine, glyphosate, imazethapyr, metolachlor, diquat, s-metolachlor, AMPA, dicamba, dimethenamid-P, metribuzin), eight insecticides (chlorpyrifos, diazinon, permethrin, carbaryl, clothianidin, imidacloprid, thiamethoxam, chlorantraniliprole), and OECD 249 positive control 3,4-dichloroaniline.

View Article and Find Full Text PDF

Post-synthesis surface modification of Cu/Zr metal azolate framework: A pathway to highly sensitive electrochemical biosensors for atrazine detection.

Anal Chim Acta

February 2025

Dept. of Electronic Materials Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea. Electronic address:

Background: Atrazine (ATZ), a pesticide that poses serious health problems, is observed in the environment, thereby prompting its periodic monitoring and control using functional biosensors. However, established methods for ATZ detection have limited applicability. Two-dimensional (2D) metal azolate frameworks (MAF) have a higher surface area per unit volume and provide easier access to active sites.

View Article and Find Full Text PDF

Atrazine and S-metolachlor are herbicides widely used on corn and soybean crops where they are sometimes found in concentrations of concern in nearby aquatic ecosystems, potentially affecting autotrophic organisms. The aim of this study was to investigate the response of the green algae Enallax costatus, the diatom Gomphonema parvulum and a culture of the cyanobacteria Phormidium sp. and Microcystis aeruginosa, to atrazine and S-metolachlor alone and in mixture (0, 10, 100 and 1000 µg.

View Article and Find Full Text PDF

Atrazine (ATR) is an endocrine disruptor known for its persistence and mobility. While the diffuse characteristics and potential risks of ATR have been extensively studied, its transregional migration and degradation characteristics have received less attention. In this study, a modified mass balance approach considering the diffuse source (DS), tributaries, water resource usage, degradation, adsorption, and evaporation was developed based on the traditional mass balance framework and field sampling to estimate the DS fluxes of ATR in a large river basin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!