Objectives: The purpose of this study was to evaluate the image quality and diagnostic accuracy of very low-dose, dual-source computed tomography (DSCT) angiography for the evaluation of coronary stents.

Background: Iterative reconstruction (IR) leads to substantial reduction of image noise and hence permits the use of very low-dose data acquisition protocols in coronary computed tomography angiography.

Methods: Fifty symptomatic patients with 87 coronary stents (diameter 3.0 ± 0.4 mm) underwent coronary DSCT angiography (heart rate, 60 ± 6 beats/min; prospectively electrocardiography-triggered axial acquisition; 80 kV, 165 mA, 2 × 128 × 0.6-mm collimation; 60 ml of contrast at 6 ml/s) before invasive coronary angiography. DSCT images were reconstructed using both standard filtered back projection and a raw data-based IR algorithm (SAFIRE, Siemens Healthcare, Forchheim, Germany). Subjective image quality (4-point scale from 0 [nondiagnostic] to 3 [excellent image quality]), image noise, contrast-to-noise ratio as well as the presence of in-stent stenosis >50% were independently determined by 2 observers.

Results: The median dose-length product was 23.0 (22.0; 23.0) mGy · cm (median estimated effective dose of 0.32 [0.31; 0.32] mSv). IR led to significantly improved image quality compared with filtered back projection (image quality score, 1.8 ± 0.6 vs. 1.5 ± 0.5, p < 0.05; image noise, 70 Hounsfield units [62; 80 Hounsfield units] vs. 96 Hounsfield units [82; 113 Hounsfield units], p < 0.001; contrast-to-noise ratio, 11.0 [9.6; 12.4] vs. 8.0 [6.2; 9.3], p < 0.001). To detect significant coronary stenosis in filtered back projection reconstructions, the sensitivity, specificity, positive predictive value, and negative predictive value were 97% (32 of 33), 53% (9 of 17), 80% (32 of 40), and 90% (9 of 10) per patient, respectively; 89% (43 of 48), 79% (120 of 152), 57% (42 of 74), and 96% (121 of 126) per vessel, respectively; and 85% (12 of 14), 69% (51 of 73), 32% (11 of 34), and 96% (51 of 53) per stent, respectively. In reconstructions obtained by IR, the corresponding values were 100% (33 of 33), 65% (11 of 17), 85% (33 of 39), and 100% (11 of 11) per patient, respectively; 96% (46 of 48), 84% (129 of 152), 66% (47 of 71), and 98% (127 of 129) per vessel, respectively; and 100% (14 of 14), 75% (55 of 73), 44% (14 of 32), and 100% (55 of 55) per stent, respectively. These differences were not significant.

Conclusions: In selected patients, prospectively electrocardiography-triggered image acquisition with 80-kV tube voltage and low current in combination with IR permits the evaluation of patients with implanted coronary artery stents with reasonable diagnostic accuracy at very low radiation exposure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcmg.2012.10.023DOI Listing

Publication Analysis

Top Keywords

image quality
16
image noise
12
filtered projection
12
image
9
low-dose dual-source
8
iterative reconstruction
8
coronary
8
coronary artery
8
diagnostic accuracy
8
computed tomography
8

Similar Publications

Background: Body image issues are prevalent among individuals diagnosed with cancer, leading to detrimental effects on their physical and psychological recovery. eHealth has emerged as a promising approach for enhancing the body image of patients with cancer.

Objective: The purpose of this study was to evaluate the effectiveness of eHealth interventions on body image and other health outcomes (quality of life, physical symptoms, and emotional distress) among patients with cancer.

View Article and Find Full Text PDF

Background: With the use of machine learning algorithms, artificial intelligence (AI) has become a viable diagnostic and treatment tool for oral cancer. AI can assess a variety of information, including histopathology slides and intraoral pictures.

Aim: The purpose of this systematic review is to evaluate the efficacy and accuracy of AI technology in the detection and diagnosis of oral cancer between 2020 and 2024.

View Article and Find Full Text PDF

Site-Specific Molecular Engineering of Nanobody-Glucoside Conjugates for Enhanced Brain Tumor Targeting.

Bioconjug Chem

January 2025

Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.

Nanobodies play an increasingly prominent role in cancer imaging and therapy. However, their efficacy is often constrained by inadequate tumor penetration and rapid clearance from the bloodstream, particularly in brain tumors due to the intractable blood-brain barrier (BBB). Glycosylation is a favorable strategy for modulating the biological functions of nanobodies, including permeability and pharmacokinetics, but it also leads to heterogeneous glycan structures, which affect the targeting ability, stability, and quality of nanobodies.

View Article and Find Full Text PDF

This study investigates the perceptions of university students majoring in film and media production (FMP) regarding the over-the-top (OTT) industry. We used the Q methodology to achieve this study's purpose, with 33 Q sets and 22 university students majoring in FMP. The study revealed three perception structures of FMP major university students regarding the OTT industry.

View Article and Find Full Text PDF

The evolution of human behaviour is marked by key decision-making processes reflected in technological variability in the early archaeological record. As part of the technological system, differences in raw material quality directly affect the way that humans produce, design and use stone tools. The selection, procurement and use of various raw materials requires decision-making to evaluate multiple factors such as suitability to produce and design tools, but also the materials' efficiency and durability in performing a given task.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!