Degradation performance of biodegradable Fe-Mn-C(-Pd) alloys.

Mater Sci Eng C Mater Biol Appl

Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland.

Published: May 2013

Biodegradable metals offer great potential in circumventing the long-term risks and side effects of medical implants. Austenitic Fe-Mn-C-Pd alloys feature a well-balanced combination of high strength and considerable ductility which make them attractive for use as degradable implant material. The focus of this study is the evaluation of the degradation performance of these alloys by means of immersion testing and electrochemical impedance spectroscopy in simulated body fluid. The Fe-Mn-C-Pd alloys are characterized by an increased degradation rate compared to pure Fe, as revealed by both techniques. Electrochemical measurements turned out to be a sensitive tool for investigating the degradation behavior. They not only show that the polarization resistance is a measure of corrosion tendency, but also provide information on the evolution of the degradation product layers. The mass loss data from immersion tests indicate a decreasing degradation rate for longer times due to the formation of degradation products on the sample surfaces. The results are discussed in detail in terms of the degradation mechanism of Fe-based alloys in physiological media.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2012.10.013DOI Listing

Publication Analysis

Top Keywords

fe-mn-c-pd alloys
12
degradation
8
degradation performance
8
degradation rate
8
alloys
5
performance biodegradable
4
biodegradable fe-mn-c-pd
4
alloys biodegradable
4
biodegradable metals
4
metals offer
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!