MicroRNAs: an emerging science in cancer epigenetics.

J Clin Bioinforma

Department of Biology, University of Alabama Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.

Published: March 2013

MicroRNAs (miRNAs) are remarkable molecules that appear to have a fundamental role in the biology of the cell. They constitute a class of non-protein encoding RNA molecules which have now emerged as key players in regulating the activity of mRNA. miRNAs are small RNAmolecules around 22 nucleotides in length, which affect the activity of specific mRNA, directly degrading it and/or preventing its translation into protein. The science of miRNAs holds them as candidate biomarkers for the early detection and management of cancer. There is also considerable excitement for the use of miRNAs as a novel class of therapeutic targets and as a new class of therapeutic agents for the treatment of cancers. From a clinical perspective, miRNAs can induce a number of effects and may have a diverse application in biomedical research. This review highlights the general mode of action of miRNAs, their biogenesis, the effect of diet on miRNA expression and the impact of miRNAs on cancer epigenetics and drug resistance in various cancers. Further we also provide emphasis on bioinformatics software which can be used to determine potential targets of miRNAs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3608239PMC
http://dx.doi.org/10.1186/2043-9113-3-6DOI Listing

Publication Analysis

Top Keywords

cancer epigenetics
8
mirnas
8
class therapeutic
8
micrornas emerging
4
emerging science
4
science cancer
4
epigenetics micrornas
4
micrornas mirnas
4
mirnas remarkable
4
remarkable molecules
4

Similar Publications

N7-methylguanosine modification in cancers: from mechanisms to therapeutic potential.

J Hematol Oncol

January 2025

Department of Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.

N7-methylguanosine (m7G) is an important RNA modification involved in epigenetic regulation that is commonly observed in both prokaryotic and eukaryotic organisms. Their influence on the synthesis and processing of messenger RNA, ribosomal RNA, and transfer RNA allows m7G modifications to affect diverse cellular, physiological, and pathological processes. m7G modifications are pivotal in human diseases, particularly cancer progression.

View Article and Find Full Text PDF

Somatic stem cell pools comprise diverse, highly specialized subsets whose individual contribution is critical for the overall regenerative function. In the bone marrow, myeloid-biased hematopoietic stem cells (myHSCs) are indispensable for replenishment of myeloid cells and platelets during inflammatory response but, at the same time, become irreversibly damaged during inflammation and aging. Here we identify an extrinsic factor, semaphorin 4A (Sema4A), which non-cell-autonomously confers myHSC resilience to inflammatory stress.

View Article and Find Full Text PDF

RNA Methylation Homeostasis in Ocular Diseases: All Eyes on Me.

Prog Retin Eye Res

January 2025

Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, State Key Laboratory of Vision Health, China. Electronic address:

RNA methylation is a pivotal epigenetic modification that adjusts various aspects of RNA biology, including nuclear transport, stability, and the efficiency of translation for specific RNA candidates. The methylation of RNA involves the addition of methyl groups to specific bases and can occur at different sites, resulting in distinct forms, such as N6-methyladenosine (mA), N1-methyladenosine (mA), 5-methylcytosine (mC), and 7-methylguanosine (mG). Maintaining an optimal equilibrium of RNA methylation is crucial for fundamental cellular activities such as cell survival, proliferation, and migration.

View Article and Find Full Text PDF

Targeting pancreatic cancer glutamine dependency confers vulnerability to GPX4-dependent ferroptosis.

Cell Rep Med

January 2025

State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Electronic address:

Pancreatic ductal adenocarcinoma (PDAC) relies heavily on glutamine (Gln) utilization to meet its metabolic and biosynthetic needs. How epigenetic regulators contribute to the metabolic flexibility and PDAC's response and adaptation to Gln scarcity in the tumor milieu remains largely unknown. Here, we elucidate that prolonged Gln restriction or treatment with the Gln antagonist, 6-diazo-5-oxo-L-norleucine (DON), leads to growth inhibition and ferroptosis program activation in PDAC.

View Article and Find Full Text PDF

Redirecting glucose flux during in vitro expansion generates epigenetically and metabolically superior T cells for cancer immunotherapy.

Cell Metab

January 2025

Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. Electronic address:

Cellular therapies are living drugs whose efficacy depends on persistence and survival. Expansion of therapeutic T cells employs hypermetabolic culture conditions to promote T cell expansion. We show that typical in vitro expansion conditions generate metabolically and functionally impaired T cells more reliant on aerobic glycolysis than those expanding in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!