Background: Chronic administration of Aluminum is proposed as an environmental factor that may affect several enzymes and other biomolecules related to neurotoxicity and Alzheimer's disease (AD). APE1 a multifunctional protein, functions in DNA repair and plays a key role in cell survival versus cell death upon stimulation with cytotoxic agent, making it an attractive emerging therapeutic target. The promising protective effect of resveratrol (resv), which is known to exert potent anti-inflammatory effects on neurotoxicity induced by aluminum chloride (AlCl₃), may be derived from its own antioxidant properties. In the present work we investigated the modulation of APE1 expression during AlCl₃-induced neuroinflammation (25 mg/Kg body weight by oral gavages) in experimental rats. We tested the hypothesis that a reactive oxygen species (ROS)-scavenger, resveratrol at 0.5 mg/kg bodyweight, which is known to exert potent anti-inflammatory effects, would attenuate central inflammation and modulate APE1 expression in AlCl₃-fed rats. Neuroinflammation-induced genes including β-secretase (BACE), amyloid-β precursor protein (APP), presenilin 2 (PSEN-2) and sirt-2 were determined by RT-PCR. APE1 is determined at mRNA and protein levels and confirmed by immunohistochemistry. The expression of pro-inflammatory cytokines (TNF-α, IL6) and iNOS by the rat brain extract were measured by RT-PCR.

Result: Our results indicate that resveratrol may attenuate AlCl₃-induced direct neuroinflammation in rats, and its mechanisms are, at least partly, due to maintaining high APE1 level. Resveratrol co-administration with aluminum chloride exerted more protective effect than pre-administration or treatment of induced rats. A significant elevation of APE1 at both mRNA and protein levels was observed in addition to a marked reduction in β-secretase and amyloid-β. We found that AlCl₃ stimulated the expression of TNF-α, IL-6, and iNOS in rat brain in which NF-κB was involved. Resveratrol inhibited AlCl₃-induced expression and release of TNF-α, IL-6, and iNOS in rat brain.

Conclusions: These findings establish a role for APE1 as a master regulator of AlCl₃ dependent inflammatory responses in rat brain. In addition, there was an ameliorative change with resveratrol against AlCl₃-induced neurotoxicity. These results suggest that rat brain cells produce pro-inflammatory cytokines in response to AlCl₃ in a similar pattern, and further suggest that resveratrol exerts anti-inflammatory effects in rat brain, at least partly, by inhibiting different pro-inflammatory cytokines and key signaling molecules. It might be a potential agent for treatment of neuroinflammation-related diseases, such as AD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3616857PMC
http://dx.doi.org/10.1186/1471-2202-14-26DOI Listing

Publication Analysis

Top Keywords

rat brain
20
anti-inflammatory effects
12
pro-inflammatory cytokines
12
inos rat
12
exert potent
8
potent anti-inflammatory
8
aluminum chloride
8
ape1 expression
8
mrna protein
8
protein levels
8

Similar Publications

Very-light-intensity exercise as minimal intensity threshold for activating dorsal hippocampal neurons: Evidence from rat physiological exercise model.

Biochem Biophys Res Commun

December 2024

Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8574, Japan; Division of Sport Neuroscience, Kokoro Division, Advanced Research Initiative for Human High Performance (ARIHHP), Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8574, Japan. Electronic address:

Exercise benefits the brain, particularly the learning and memory center-the dorsal hippocampus (dHPC)-and holds promise for therapeutic applications addressing age-related cognitive deficits. While moderate-to-vigorous-intensity exercise is commonly recommended for health benefits, our translational research proposes the effectiveness of very-light-intensity exercise in enhancing cognitive functions. However, the intensity-dependent characteristics of HPC activation have yet to be fully delineated; therefore, there is no evidence of whether such easily accessible exercises for people of all ages and most fitness levels can activate HPC neurons.

View Article and Find Full Text PDF

Background: Obesity and metabolic syndrome are major public health concerns linked to cognitive decline with aging. Prior work from our lab has demonstrated that short-term high fat diet (HFD) rapidly impairs memory function via a neuroinflammatory mechanism. However, the degree to which these rapid inflammatory changes are unique to the brain is unknown.

View Article and Find Full Text PDF

Study Design: Experimental Animal Study.

Objective: To continue validating an antibody which targets an epitope of neurofilament light chain (NF-L) only available during neurodegeneration and to utilize the antibody to describe the pattern of axonal degeneration 10 days post-unilateral C4 contusion in the rat.

Setting: University of Florida laboratory in Gainesville, USA.

View Article and Find Full Text PDF

Extracellular matrix (ECM) is a network of macromolecules which has two forms - perineuronal nets (PNNs) and a diffuse ECM (dECM) - both influence brain development, synapse formation, neuroplasticity, CNS injury and progression of neurodegenerative diseases. ECM remodeling can influence extrasynaptic transmission, mediated by diffusion of neuroactive substances in the extracellular space (ECS). In this study we analyzed how disrupted PNNs and dECM influence brain diffusibility.

View Article and Find Full Text PDF

Objective: Hirudin has shown potential in promoting angiogenesis and providing neuroprotection in ischemic stroke; however, its therapeutic role in promoting cerebrovascular angiogenesis remains unclear. In this study, we aimed to investigate whether hirudin exerts neuroprotective effects by promoting angiogenesis through the regulation of the Wnt/β-catenin signaling pathway.

Methods: An in vitro model of glucose and oxygen deprivation/reperfusion (OGD/R) was established using rat brain microvascular endothelial cells (BMECs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!