Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Caffeic acid phenyl ester (CAPE) has been identified as an active component of propolis, a substance that confers diverse activities in cells of various origins. However, the molecular basis of CAPE-mediated cellular activity remains to be clarified. Here, we show that CAPE preferentially induced S- and G2 /M-phase cell-cycle arrests and initiated apoptosis in human cervical cancer lines. The effect was found to be associated with increased expression of E2F-1, as there is no CAPE-mediated induction of E2F-1 in the pre-cancerous cervical Z172 cells. CAPE also up-regulated the E2F-1 target genes cyclin A, cyclin E and apoptotic protease activating of factor 1 (Apaf-1) but down-regulated cyclin B and induced myeloid leukemia cell differentiation protein (Mcl-1). These results suggest the involvement of E2F-1 in CAPE-mediated growth inhibition and cell-cycle arrest. Transient transfection studies with luciferase reporters revealed that CAPE altered the transcriptional activity of the apaf-1 and mcl-1 promoters. Further studies using chromatin immunoprecipitation assays demonstrated that E2F-1 binding to the apaf-1 and cyclin B promoters was increased and decreased, respectively, in CAPE-treated cells. Furthermore, E2F-1 silencing abolished CAPE-mediated effects on cell-cycle arrest, apoptosis and related gene expression. Taken together, these results indicate a crucial role for E2F-1 in CAPE-mediated cellular activities in cervical cancer cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/febs.12242 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!