We have performed a systematic study of lithium hydride (LiH), using orbital-free molecular dynamics, with a focus on mass transport properties such as diffusion and viscosity by extending our previous studies at the lower end of the warm, dense matter regime to cover a span of densities from ambient to 10-fold compressed and temperatures from 10 eV to 10 keV. We determine analytic formulas for self- and mutual-diffusion coefficients, and viscosity, which are in excellent agreement with our molecular dynamics results, and interpolate smoothly between liquid and dense plasma regimes. In addition, we find the orbital-free calculations begin to agree with the Brinzinskii-Landau formula above about 250 eV at which point the medium becomes fully ionized. A binary-ion model based on a bare Coulomb interaction within a neutralizing background with the effective charges determined from a regularization prescription shows good agreement above about 100 eV with the orbital-free results. Finally, we demonstrate the validity of a pressure-based mixing rule in determining the transport properties from the pure-species quantities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.87.023104 | DOI Listing |
Sci Rep
January 2025
Faculty of Engineering Sciences Institute of Mechatronics and System Dynamics, University of Duisburg-Essen, 47057, Duisburg, Germany.
Hybrid transmissions have attracted great attention in the automotive industry due to their energy-saving, low-emission properties, and have become a focus of research and development. This paper presents a new method to design the configuration of two mode power split hybrid transmission using the combination of the simple planetary gear trains (PGT). For this purpose, the hybrid transmission structure is divided into two substructures, which achieve different operation modes respectively.
View Article and Find Full Text PDFSci Rep
January 2025
Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
Cannabidiol (CBD), a specialized metabolite (phytocannabinoid) abundant in Cannabis sativa, is attracting increasing attention for its alleged health-promoting properties. The present study aimed to investigate the pharmacokinetics of CBD and its primary metabolite, 7-hydroxy-cannabidiol (7-OH-CBD), following a single oral dose of a CBD-rich Cannabis sativa extract, equivalent to 70 mg CBD, in healthy male (n=5) and female (n=6) participants. Using a randomized crossover design, the study evaluated the impact of a standardized high-fat meal compared to fasting on the oral bioavailability of CBD.
View Article and Find Full Text PDFSci Rep
January 2025
School of Mechanical & Electrical Engineering, Guizhou Normal University, Guiyang, China.
Understanding the mechanical properties of Rosa sterilis S.D. Shi is important for the design and improvement of related mechanical equipment for planting, picking, processing, and transporting Rosa sterilis S.
View Article and Find Full Text PDFNat Commun
January 2025
Shanghai Key Laboratory MFree, Institute for Shanghai Advanced Research in Physical Sciences, Shanghai, 201203, China.
In recent years, metal hydride research has become one of the driving forces of the high-pressure community, as it is believed to hold the key to superconductivity close to ambient temperature. While numerous novel metal hydride compounds have been reported and extensively investigated for their superconducting properties, little attention has been focused on the atomic and electronic states of hydrogen, the main ingredient in these novel compounds. Here, we present combined H- and La-NMR data on lanthanum superhydrides, LaH, (x = 10.
View Article and Find Full Text PDFJ Control Release
January 2025
State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, PR China. Electronic address:
Nanomedicines need to overcome multiple biological barriers in the body to reach the target area. However, traditional nanomedicines with constant physicochemical properties are not sufficient to meet the diverse and sometimes conflicting requirements during in vivo transport, making it difficult to penetrate various biological barriers, resulting in suboptimal drug delivery efficiency. Smart self-transforming nano-systems (SSTNs), capable of altering their own physicochemical properties (including size, charge, hydrophobicity, stiffness, morphology, etc.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!