Synchronization of two bubble trains in a viscous fluid: experiment and numerical simulation.

Phys Rev E Stat Nonlin Soft Matter Phys

Instituto de Física, Universidade de São Paulo, Caixa Postal 66318, 05315-970 São Paulo, Brazil.

Published: February 2013

We investigate the interactions of two trains of bubbles, ejected by nozzles immersed in a viscous fluid, due only to the solution's circulation. The air fluxes (Q(1),Q(2)) are controlled independently, and we constructed parameter spaces of the periodicity of the attractors. We have observed complex behavior and many modes of phase synchronization that depend on these airflows as well as on the height (H) of the solution above the tops of the nozzles. Such synchronizations are shown in details in the parameter space (Q(1),Q(2)) and also in the (Q(1),H) space. We also observed that the coupling strength between the two trains of bubbles increases when the solution height increases. The experimental results were reasonably explained by numerical simulations of a model combining a simple bubble growth model for each bubble train and a coupling term between them, which was assumed symmetrical and proportional to the growth velocities.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.87.022917DOI Listing

Publication Analysis

Top Keywords

viscous fluid
8
trains bubbles
8
synchronization bubble
4
bubble trains
4
trains viscous
4
fluid experiment
4
experiment numerical
4
numerical simulation
4
simulation investigate
4
investigate interactions
4

Similar Publications

The colon possesses a unique physiological environment among human organs, where there is a highly viscous body fluid layer called the mucus layer above colonic epithelial cells. Dysfunction of the mucus layer not only contributes to the occurrence of colorectal cancer (CRC) but also plays an important role in the development of chemoresistance in CRC. Although viscosity is an essential property of the mucus layer, it remains elusive how viscosity affects chemoresistance in colon cancer cells.

View Article and Find Full Text PDF

Capsules, which are potentially-active fluid droplets enclosed in a thin elastic membrane, experience large deformations when placed in suspension. The induced fluid-structure interaction stresses can potentially lead to rupture of the capsule membrane. While numerous experimental studies have focused on the rheological behavior of capsules until rupture, there remains a gap in understanding the evolution of their mechanical properties and the underlying mechanisms of damage and breakup under flow.

View Article and Find Full Text PDF

Supercritical CO, as an environmentally friendly and pollution-free fluid, has been applied in various EOR techniques such as CO flooding. However, the low viscosity of the gas leads to issues such as early breakthrough, viscous fingering, and gravity override in practical applications. Although effective mobility-control methods, such as CO WAG (water alternating gas)-, CO foam-, and gel-based methods, have been developed to mitigate these phenomena, they do not fundamentally solve the problem of the high gas-oil mobility ratio, which leads to reduced gas sweep efficiency.

View Article and Find Full Text PDF

Objectives: The aim of this study was to ivnestigate the effect of simulated gastrointestinal viscosity, surface tension, and pH on the dissolution rate of two commercial candesartan cilexetil (CC) products.

Materials And Methods: dissolution of two commercial CC products and immediate release of 16 mg of CC were applied under two conditions: (1) the requirements of the United States Pharmacopeia (USP) and (2) conditions physiologically related to the gastrointestinal tract mimicking viscous food intake. The solubility of CC in different simulation fluids was also measured.

View Article and Find Full Text PDF

The current investigation explores tri-hybrid mediated blood flow through a ciliary annular model, designed to emulate an endoscopic environment. The human circulatory system, driven by the metachronal ciliary waves, is examined in this study to understand how ternary nanoparticles influence wave-like flow dynamics in the presence of interfacial nanolayers. We also analyze the effect of an induced magnetic field on Ag-Cu-/blood flow within the annulus, focusing on thermal radiation, heat sources, buoyancy forces and ciliary motion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!