Motivated by recent proposals of "collisionally inhomogeneous" Bose-Einstein condensates (BECs), which have a spatially modulated scattering length, we introduce a phase imprint into the macroscopic order parameter governing the dynamics of BECs with spatiotemporal varying scattering length described by a cubic Gross-Pitaevskii (GP) equation and then suitably engineer the imprinted phase to generate the modified GP equation, also called the cubic derivative nonlinear Schrödinger (NLS) equation. This equation describes the dynamics of condensates with two-body (attractive and repulsive) interactions in a time-varying quadratic external potential. We then carry out a theoretical analysis which invokes a lens-type transformation that converts the cubic derivative NLS equation into a modified NLS equation with only explicit temporal dependence. Our analysis suggests a particular interest in a specific time-varying potential with the strength of the magnetic trap ~1/(t+t(*))(2). For a time-varying quadratic external potential of this kind, an explicit expression for the growth rate of a purely growing modulational instability is presented and analyzed. We point out the effect of the imprint parameter and the parameter t(*) on the instability growth rate, as well as on the solitary waves of the BECs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.87.022914 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!