Non-ATP-competitive kinase inhibitors - enhancing selectivity through new inhibition strategies.

Expert Opin Drug Discov

Vice President of Research KAI Pharmaceutical, Inc., 270 Littlefield Ave., South San Francisco, California 94080, USA +1 650 244 1166 ; +1 650 244 1199 ;

Published: July 2008

Background: ATP-competitive inhibitors of protein kinases have been successfully developed for life-threatening indications such as cancer. However, owing to the similarity of the ATP binding sites between kinases, it has been challenging to identify specific inhibitors. The progress towards the generation of kinase inhibiting drugs for more chronic indications has been slowed by the concern that low specificity kinase inhibitors will have undesired toxicities.

Objective And Methods: We have reviewed the scientific and patent literature to summarize alternative strategies that are being used to develop non-ATP-competitive kinase inhibitors with greater selectivity.

Results/conclusion: Several new approaches are being taken to achieve selectivity. Among these, the use of small peptide therapeutics is particularly promising and is already yielding drugs that are demonstrating promise in human clinical trials.

Download full-text PDF

Source
http://dx.doi.org/10.1517/17460441.3.7.761DOI Listing

Publication Analysis

Top Keywords

kinase inhibitors
12
non-atp-competitive kinase
8
inhibitors
5
inhibitors enhancing
4
enhancing selectivity
4
selectivity inhibition
4
inhibition strategies
4
strategies background
4
background atp-competitive
4
atp-competitive inhibitors
4

Similar Publications

Hepatitis C virus (HCV) presents a significant global health issue due to its widespread prevalence and the absence of a reliable vaccine for prevention. While significant progress has been achieved in therapeutic interventions since the disease was first identified, its resurgence underscores the need for innovative strategies to combat it. The nonstructural protein NS5A is crucial in the life cycle of the HCV, serving as a significant factor in both viral replication and assembly processes.

View Article and Find Full Text PDF

Pathogenic activating mutations in the fibroblast growth factor receptor 3 (FGFR3) drive disease maintenance and progression in urothelial cancer. 10-15% of muscle-invasive and metastatic urothelial cancer (MIBC/mUC) are FGFR3-mutant. Selective targeting of FGFR3 hotspot mutations with tyrosine kinase inhibitors (e.

View Article and Find Full Text PDF

Metaplastic breast cancer (MpBC) is a highly chemoresistant subtype of breast cancer with no standardized therapy options. A clinical study in anthracycline-refractory MpBC patients suggested that nitric oxide synthase (NOS) inhibitor NG-monomethyl-l-arginine (L-NMMA) may augment anti-tumor efficacy of taxane. We report that NOS blockade potentiated response of human MpBC cell lines and tumors to phosphoinositide 3-kinase (PI3K) inhibitor alpelisib and taxane.

View Article and Find Full Text PDF

Polo-like kinase 1 (PLK1) protects against genome instability by ensuring timely and accurate mitotic cell division, and its activity is tightly regulated throughout the cell cycle. Although the pathways that initially activate PLK1 in G2 are well-characterized, the factors that directly regulate mitotic PLK1 remain poorly understood. Here, we identify that human PLK1 activity is sustained by the DNA damage response kinase Checkpoint kinase 2 (Chk2) in mitosis.

View Article and Find Full Text PDF

By targeting the essential viral RNA-dependent RNA polymerase (RdRP), nucleoside analogs (NAs) have exhibited great potential in antiviral therapy for RNA virus-related diseases. However, most ribose-modified NAs do not present broad-spectrum features, likely due to differences in ribose-RdRP interactions across virus families. Here, we show that HNC-1664, an adenosine analog with modifications both in ribose and base, has broad-spectrum antiviral activity against positive-strand coronaviruses and negative-strand arenaviruses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!