Pepper (Capsicum spp.) fruits are covered by a relatively thick coating of cuticle that limits fruit water loss, a trait previously associated with maintenance of postharvest fruit quality during commercial marketing. To shed light on the chemical-compositional diversity of cuticles in pepper, the fruit cuticles from 50 diverse pepper genotypes from a world collection were screened for both wax and cutin monomer amount and composition. These same genotypes were also screened for fruit water loss rate and this was tested for associations with cuticle composition. Our results revealed an unexpectedly large amount of variation for the fruit cuticle lipids, with a more than 14-fold range for total wax amounts and a more than 16-fold range for cutin monomer amounts between the most extreme accessions. Within the major wax constituents fatty acids varied from 1 to 46%, primary alcohols from 2 to 19%, n-alkanes from 13 to 74% and triterpenoids and sterols from 10 to 77%. Within the cutin monomers, total hexadecanoic acids ranged from 54 to 87%, total octadecanoic acids ranged from 10 to 38% and coumaric acids ranged from 0.2 to 8% of the total. We also observed considerable differences in water loss among the accessions, and unique correlations between water loss and cuticle constituents. The resources described here will be valuable for future studies of the physiological function of fruit cuticle, for the identification of genes and QTLs associated with fruit cuticle synthesis in pepper fruit, and as a starting point for breeding improved fruit quality in pepper.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ppl.12035DOI Listing

Publication Analysis

Top Keywords

water loss
20
fruit cuticle
16
acids ranged
12
fruit
10
pepper capsicum
8
fruit water
8
fruit quality
8
pepper fruit
8
cutin monomer
8
pepper
6

Similar Publications

Variable effects of a fire-retardant gradient on seasonal wetland communities.

Ecotoxicology

January 2025

Department of Biological Sciences, California State University, Sacramento, CA, 95819, USA.

Wildfires have become larger and more severe in recent decades. Fire retardant is one of the most common wildfire response tools to protect against loss of life and property. Previous studies have documented various effects of fire retardant, which commonly contains chemicals used in fertilizers, on plant and invertebrate community composition.

View Article and Find Full Text PDF

Purpose: Dysfunction of vasomotor reactions due to arteriolar smooth muscle causes serious adverse events, such as loss of hemodynamic coherence. This in turn can increase risks of cardiovascular-related diseases. A noninvasive and quantitative evaluation of microvascular disorder is therefore very important for early diagnosis and treatment.

View Article and Find Full Text PDF

Huntington's disease (HD) is an autosomal dominant neurodegenerative disease with the age at which characteristic symptoms manifest strongly influenced by inherited HTT CAG length. Somatic CAG expansion occurs throughout life and understanding the impact of somatic expansion on neurodegeneration is key to developing therapeutic targets. In 57 HD gene expanded (HDGE) individuals, ~23 years before their predicted clinical motor diagnosis, no significant decline in clinical, cognitive or neuropsychiatric function was observed over 4.

View Article and Find Full Text PDF

In vitro and animal studies have suggested that inoculation with herpes simplex virus 1 (HSV-1) can lead to amyloid deposits, hyperphosphorylation of tau, and/or neuronal loss. Here, we studied the association between HSV-1 and Alzheimer's disease biomarkers in humans. Our sample included 182 participants at risk of cognitive decline from the Multidomain Alzheimer Preventive Trial who had HSV-1 plasma serology and an amyloid PET scan.

View Article and Find Full Text PDF

Challenges emerge in the quest for highly efficient and biocompatible coatings to tackle microbial contamination. Here, we propose a bioinspired paradigm combining (-)-epigallocatechin gallate (EGCG) and l-arginine surfactants (LAM) as all-green building blocks for advanced coatings with superior performance. Molecular dynamics simulations reveal the natural assembly process of the EGCG/LAM supramolecular nanoparticles (ELA NPs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!