Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Advances in high-throughput screening methodologies, biological reagents and in silico techniques relating to cytochrome p450 (CYP)-mediated drug-drug interactions have led to reduced clinical attrition rates and to the development of safer therapeutics. Greater understanding of the impact of genetic variability and CYP induction on drug interactions, particularly for low therapeutic index drugs, has facilitated improved clinical study design. This review outlines recent developments using in vitro and in silico technologies to study CYP-mediated drug interactions and describes how those tools have been combined to drive improved candidate selection and in vivo predictions early in the drug discovery process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1517/17460441.1.7.677 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!