Photoluminescent toroids formed by temperature-driven self-assembly of rhodamine B end-capped poly(N-isopropylacrylamide).

Macromol Rapid Commun

#200, Chung-Pei Road, Department of Chemical Engineering and R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 32023, Taiwan.

Published: April 2013

In this paper, self-assembled polymeric toroids formed by a temperature-driven process are reported. Rhodamine B (RhB) end-capped poly(N-isopropylacrylamide) (PNIPAAm) demonstrating a lower critical solution temperature (LCST) is prepared. In a two-phase system, the polymer in the aqueous phase could move to the chloroform phase on raising the temperature above its LCST. This temperature-driven process results in the formation of polymeric toroids in the chloroform phase, and the strategy affords a new pathway to toroidal self-assembly of polymers. Moreover, the photoluminescent behavior of the RhB end-capped PNIPAAm species formed by the process is also studied and discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/marc.201300038DOI Listing

Publication Analysis

Top Keywords

toroids formed
8
formed temperature-driven
8
end-capped polyn-isopropylacrylamide
8
polymeric toroids
8
temperature-driven process
8
rhb end-capped
8
temperature lcst
8
chloroform phase
8
photoluminescent toroids
4
temperature-driven self-assembly
4

Similar Publications

regenerates one head when cut, but how forces shaping the head are coordinated remains unclear. Soft compression of 's head-regenerating tissues induces the formation of viable, two-headed animals. Compression creates new topological defects in the supracellular orientational order of muscular actin fibers, associated with additional heads.

View Article and Find Full Text PDF

We performed the first simulations of accretion onto the compact objects in the Reissner-Nordström (RN) space-time. The results obtained in general relativity are representative of those for spherically symmetric naked singularities and black holes in a number of modified gravity theories. A possible application of these calculations is to the active galactic nuclei with their powerful jets and outflows.

View Article and Find Full Text PDF

A Crystalline NiX Complex.

J Am Chem Soc

December 2024

Chemistry Research Laboratory, Department of Chemistry, Oxford OX1 3TA, U.K.

High-valent nickel species are implicated as intermediates in industrially relevant chemical transformations and in the catalytic cycles of metalloenzymes. Although a small number of tetravalent NiX complexes have been crystallographically characterized, higher nickel valence states have not been identified. Here we report a stable, crystalline NiX complex, Ni(BeCp) (; cyclopentadienyl anion (Cp)), formed by the insertion of zerovalent nickel into three Be-Be bonds.

View Article and Find Full Text PDF

Sticholysin I and II (St I/II) belong to the actinoporins family; these proteins form pores in host cell membranes by binding their N-terminal segment to the membrane, leading to protein-lipid (toroidal) pores. Peptides derived from actinoporins pore-forming domains replicate their folding properties and permeabilizing effects. Despite the advances in understanding how these proteins and peptides mediate pore formation, the role of different N-terminal segments in inducing membrane curvature is still unclear.

View Article and Find Full Text PDF

Synthetic measurements of runaway electron synchrotron emission in the SPARC tokamak.

Rev Sci Instrum

November 2024

Commonwealth Fusion Systems, Devens, Massachusetts 01434, USA.

With plasma currents up to 8.7 MA, the SPARC tokamak runs the risk of forming multi-MA beams of relativistic "runaway" electrons (REs), which could damage plasma facing components if unmitigated. The infrared (IR) and visible imaging and visible spectroscopy systems in SPARC are designed with measurements of synchrotron emission from REs in mind.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!