Zinc is proposed as an exciting new biomaterial for use in bioabsorbable cardiac stents. Not only is zinc a physiologically relevant metal with behavior that promotes healthy vessels, but it combines the best behaviors of both current bioabsorbable stent materials: iron and magnesium. Shown here is a composite image of zinc degradation in a murine (rat) artery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.201300226 | DOI Listing |
J Biomed Mater Res A
January 2025
PRISM Research Institute, Technological University of the Shannon: Midlands Midwest, Athlone, Ireland.
This study provides a comprehensive investigation of antimicrobial additives (ZnO/AgNPs and SiO/AgNPs) on the properties of biodegradable ternary blends composed of poly(hydroxybutyrate) (PHB), poly(lactic acid) (PLA), and polycaprolactone (PCL) by examining the morphology, thermal stability, crystallinity index, and cell viability of these blends. Overall, transmission electron microscopy (TEM) analysis revealed that AgNPs and SiO exhibited comparable sizes, whereas ZnO was significantly larger, which influences their release profiles and interactions with the blends. The addition of antimicrobials influences the rheology of the blends, acting as compatibilizers by reducing the intermolecular forces between biopolymers.
View Article and Find Full Text PDFBioact Mater
April 2025
University of Coimbra, CEMMPRE, Department of Mechanical Engineering, 3030-788, Coimbra, Portugal.
Polymeric coronary stents, like the ABSORB™, are commonly used to treat atherosclerosis due to their bioresorbable and cell-compatible polymer structure. However, they face challenges such as high strut thickness, high elastic recoil, and lack of radiopacity. This study aims to address these limitations by modifying degradable stents produced by additive manufacturing with poly(lactic acid) (PLA) and poly(ε-caprolactone) (PCL) with degradable metallic coatings, specifically zinc (Zn) and magnesium (Mg), deposited via radiofrequency (rf) magnetron sputtering.
View Article and Find Full Text PDFActa Biomater
January 2025
Mechatronic, Electrical Energy and Dynamic Systems, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, 1348 Louvain-la-Neuve, Belgium; Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, 1200 Woluwe-Saint-Lambert, Belgium; Department of Materials Engineering, KU Leuven, 3001 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, 3000 Leuven, Belgium. Electronic address:
Biodegradable intravascular stents offer a promising alternative to permanent stents for treating atherosclerosis-related artery narrowing by potentially avoiding long-term complications. Identifying materials that degrade harmlessly and uniformly at a suitable rate is crucial. This study evaluated an advanced zinc alloy (Zn-Ag-Cu-Mn-Zr) alongside pure iron and pure zinc, using a simplified stent model of metallic wires implanted in the rat aorta.
View Article and Find Full Text PDFAdv Biol (Weinh)
December 2024
Institute of Neuroscience, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, 110016, China.
The study is designed to evaluate the corrosion behavior, biocompatibility, and cytotoxicity of a novel magnesium alloy, Mg-2Zn-0.5Nd (ZN20), for potential use as biodegradable scaffolding in cerebrovascular stents. Magnesium alloy (AZ31) and ZN20 are co-cultured with Human Umbilical Vein Endothelial Cells (HUVEC) and human neuroblastoma cell (SH-SY5Y), respectively.
View Article and Find Full Text PDFACS Appl Bio Mater
November 2024
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.
The implantation of digestive tract stents at various lesion sites can effectively improve digestive tract patency, opening up an excellent treatment method for diseases that are currently incurable or resistant to conventional surgery. Digestive tract stents have been extensively studied and widely used worldwide due to their unique advantages of simple implantation, low trauma, satisfactory effect, and low complication rate. Among the various types of stents, metallic stents have been developed to improve surgical efficacy due to their excellent mechanical properties and are constantly being improved.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!