Rationale: Dissolved organic nitrogen (DON) represents a significant fraction of the total dissolved nitrogen pool in most surface waters and serves as an important nitrogen source for phytoplankton and bacteria. As with other natural organic matter mixtures, ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) is the only technique currently able to provide molecular composition information on DON. Although electrospray ionization (ESI) is the most commonly used ionization method, it is not very efficient at ionizing most DON components.

Methods: Positive- and negative-mode atmospheric pressure photoionization (APPI) coupled with ultrahigh resolution FTICRMS at 9.4 T were compared for determining the composition of DON before and after bioassays. Toluene was added as the APPI dopant to the solid-phase DON extracts, producing a final sample that was 90% methanol and 10% toluene by volume.

Results: Positive-mode (+) APPI proved significantly more efficient at ionizing DON; 62% of the formulas that could be assigned in the positive-ion spectrum contained at least one nitrogen atom vs. 31% in the negative-ion spectrum. FTICR mass spectral data indicated that most of the refractory DON compounds (i.e. nonreactive during the 5 days of the incubation) had molecular compositions representative of lignin-like molecules, while lipid-like and protein-like molecules comprised most of the small reactive component of the DON pool.

Conclusions: From these data we conclude that (+) APPI FTICRMS is a promising technique for describing the molecular composition of DON mixtures. The technique is particularly valuable in assessing the bioavailability of individual components of DON when combined with bioassays.

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.6521DOI Listing

Publication Analysis

Top Keywords

composition don
12
don
10
natural organic
8
organic nitrogen
8
atmospheric pressure
8
pressure photoionization
8
fourier transform
8
transform ion
8
ion cyclotron
8
cyclotron resonance
8

Similar Publications

Phytosterol-enriched Camellia oleifera Abel seed oil obtained by subcritical butane extraction: Physicochemical properties and oxidative stability.

Food Chem

January 2025

School of Pharmacy, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Hainan Medical University, Haikou 571199, China. Electronic address:

Tea (Camellia oleifera Abel) seed oil (TSO) has antioxidant and pharmacological properties. In this study, TSO was obtained from tea seeds by subcritical n-butane extraction (SBE), which is an environmentally friendly method. The oil yield, quality characteristics, and chemical composition of the extracted TSO were compared with those of oils obtained by supercritical carbon dioxide extraction (SCDE) and conventional cold pressing (CP).

View Article and Find Full Text PDF

One of the main difficulties in nanotechnology is the development of an environmentally friendly, successful method of producing nanoparticles from biological sources. Silver-doped zinc oxide nanoparticles (Ag-ZnO NPs), with antibacterial and antioxidant properties, were produced using Adiantum venustum extract as a green technique. Fresh A.

View Article and Find Full Text PDF

Bioelectrical Impedance Vector Analysis (BIVA) is a valuable tool for evaluating hydration and body composition, but its application in subacute post-stroke patients remains unexplored. This study aimed to fill this gap by analyzing BIVA in a cohort of 87 subacute post-stroke patients (42 women, mean age 69 ± 12) undergoing rehabilitation. At admission (T0), diagnosis of malnutrition with GLIM criteria and of sarcopenia with EWGSOP2 was done, and patients were analyzed with BIVA.

View Article and Find Full Text PDF

The stability of RNA is a critical factor in determining its functionality and degradation in the cell. In recent years, it has been shown that the stability of RNA depends on a complex interaction of external and internal factors. External conditions, such as temperature fluctuations, the level of acidity of the environment, the presence of various substances and ions, as well as the effects of oxidative stress, can change the structure of RNA and affect its stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!