Carbon-based monoliths have been designed using a simple synthetic pathway based on using high internal phase emulsion (HIPE) as a soft template to confine the polymerization and hydrothermal carbonization of saccharide derivatives (furfural) and phenolic compounds (phloroglucinol). Monosaccharides can be isolated from the cellulosic fraction of lignocellulosic biomass and phloroglucinol can be extracted from the bark of fruit trees; however, this approach constitutes an interesting sustainable synthetic route. The macroscopic characteristics can be easily modulated; a high macroporosity and total pore volume of up to 98 % and 18 cm(3)g(-1) have been obtained, respectively. After further thermal treatment under inert atmosphere, the as-synthesized macroporous carbonized HIPEs (carbo-HIPEs) have shaping capabilities relating to interesting mechanical properties as well as a high electrical conductivity of up to 300 Sm(-1) . These conductive foams exhibit a hierarchical structure associated with the presence of both meso- and micropores that exhibit specific Brunauer-Emmett-Teller (BET) surface areas and DFT total pore volumes up to 730 m(2)g(-1) and 0.313 cm(3)g(-1) , respectively. Because of their attractive structural characteristics and intrinsic properties, these macroporous monoliths have been incorporated as a proof of principle within electrochemical devices as modified thin carbon disc electrodes. A promising two-fold improvement in the catalytic current is observed for the electrooxidation of glucose after the immobilization of a glucose oxidase-based biocatalytic mixture onto the carbo-HIPE electrodes compared to that observed if using commercial glassy carbon electrodes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.201200692DOI Listing

Publication Analysis

Top Keywords

hydrothermal carbonization
8
total pore
8
emulsion-templated macroporous
4
macroporous carbons
4
carbons synthesized
4
synthesized hydrothermal
4
carbonization application
4
application enzymatic
4
enzymatic oxidation
4
oxidation glucose
4

Similar Publications

Highly Green Fluorescent Carbon Dots from Gallic Acid: A Turn-On Sensor toward Pb Ions.

ACS Omega

January 2025

Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.

Carbon dots (CDs) are emerging novel fluorescent sensing nanomaterials owing to their tunable optical properties, biocompatibility, and eco-friendliness. Herein, we report a facile one-pot hydrothermal route for the synthesis of highly green fluorescent CDs using gallic acid (GA) as a single carbon source in ,-dimethylformamide (DMF) solvent, which serves as a nitrogen source and reaction medium. The optical properties of the synthesized GA-DMF CDs were systematically characterized by using UV-vis and photoluminescence spectroscopy, revealing strong green fluorescence.

View Article and Find Full Text PDF

Efficient luminescent solar concentrators based on solvent polarity induced multiple-colored carbon dots.

J Colloid Interface Sci

January 2025

State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, No. 308 Ningxia Road, Qingdao 266071 PR China. Electronic address:

Luminescent solar concentrators (LSCs) are large scale sunlight collector and can be used for building-integrated photovoltaics (BIPV). Achieving high-performance LSCs requires fluorophores with broad absorption, high quantum yield and a large Stokes shift. Nevertheless, conventional high-efficiency LSCs typically rely on heavy metal-based quantum dots as fluorophores.

View Article and Find Full Text PDF

To investigate the potential of activated carbon from palm kernel shell waste for Tc-radiolabeled nanocarbon aerosol, a new production technology for carbon-based Tc-radioaerosol from such a waste was developed. Treated-palm shell charcoal (t-PSC) was prepared by hydrothermal method to increase the surface area, followed by Tc radiolabelling optimization. The optimal Tc radiolabeling conditions resulted in an adsorption capacity of 21.

View Article and Find Full Text PDF

Water pollution, resulting from industrial effluents, agricultural runoff, and pharmaceutical residues, poses serious threats to ecosystems and human health, highlighting the need for innovative approaches to effective remediation, particularly for non-biodegradable emerging pollutants. This research work explores the influence of shape-controlled nanocrystalline titanium dioxide (TiO NC), synthesized by a simple hydrothermal method, on the photodegradation efficiency of three different classes of emerging environmental pollutants: phenol, pesticides (methomyl), and drugs (sodium diclofenac). Experiments were conducted to assess the influence of the water matrix on treatment efficiency by using ultrapure water and stormwater (basic) collected from an urban drainage system as matrices.

View Article and Find Full Text PDF

Elevated dopamine (DA) levels in urine denote neuroblastoma, a pediatric cancer. Saccharide-derived carbon dots (CDs) were applied to assay DA detection in simulated urine (SU) while delineating the effects of graphene defect density on electrocatalytic activity. CDs were hydrothermally synthesized to vary graphene defect densities using sucrose, raffinose, and palatinose, depositing them onto glassy carbon electrodes (GCEs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!