Rationale: Synthetic polymers of molecular masses up to a few kDa can be analyzed without the use of any matrix by direct laser desorption/ionization mass spectrometry (LDI-MS). In this technique, the surface of the sample plate plays a crucial role, and many attempts have been made to understand the influence of the surface on the ease of desorption. Since this technique requires no tedious sample pretreatment, it is a promising method for the rapid characterization of various synthetic polymers.

Methods: Parylene (poly(p-xylylenes), PPX) was tested as a surface support for studying the molecular masses of biocompatible polymers: poly(ethylene glycol) (PEG), poly(L-lactide) (PLLA), and poly(methyl methacrylate) (PMMA). The average molecular masses of the polymers were: PEG (600.0 Da and 3.5 kDa), PMMA (2.0 kDa), and PLLA (2.8 kDa).

Results: LDI mass spectra of polymers deposited on parylene were enhanced by a factor of two over those obtained directly from the gold target plate.

Conclusions: Modification of the surface of the target plate by the addition of a PPX layer extended the functionality of LDI-TOF MS, especially for the analysis of low-mass compounds. The LDI analysis using the PPX-coated target plate provided details of polymers including: end-group, composition, monomer unit, and molecular mass distribution. The average molecular weights of four tested polymers on the gold target plate and the PPX support were unchanged, indicating that sample degradation was not occurring despite the high energy of the laser beam. The LDI investigations showed that the PPX support boosted ion yields by a factor of two compared with the gold target plate.

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.6516DOI Listing

Publication Analysis

Top Keywords

target plate
16
molecular masses
12
gold target
12
laser desorption/ionization
8
synthetic polymers
8
average molecular
8
ppx support
8
polymers
7
surface
5
molecular
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!