Aldolase sequesters WASP and affects WASP/Arp2/3-stimulated actin dynamics.

J Cell Biochem

Program in Molecular Biology, Cell Biology and Biochemistry, Boston University, Boston, Massachusetts 02215, USA.

Published: August 2013

In addition to its roles in sugar metabolism, fructose-1,6-bisphosphate aldolase (aldolase) has been implicated in cellular functions independent from these roles, termed "moonlighting functions." These moonlighting functions likely involve the known aldolase-actin interaction, as many proteins with which aldolase interacts are involved in actin-dependent processes. Specifically, aldolase interacts both in vitro and in cells with Wiskott-Aldrich Syndrome Protein (WASP), a protein involved in controlling actin dynamics, yet the function of this interaction remains unknown. Here, the effect of aldolase on WASP-dependent processes in vitro and in cells is investigated. Aldolase inhibits WASP/Arp2/3-dependent actin polymerization in vitro. In cells, knockdown of aldolase results in a decreased rate of cell motility and cell spreading, two WASP-dependent processes. Expression of exogenous aldolase rescues these defects. Whether these effects of aldolase on WASP-dependent processes were due to aldolase catalysis or moonlighting functions is tested using aldolase variants defective in either catalytic or actin-binding activity. While the actin-binding deficient aldolase variant is unable to inhibit actin polymerization in vitro and is unable to rescue cell motility defects in cells, the catalytically inactive aldolase is able to perform these functions, providing evidence that aldolase moonlighting plays a role in WASP-mediated processes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.24538DOI Listing

Publication Analysis

Top Keywords

aldolase
15
vitro cells
12
wasp-dependent processes
12
actin dynamics
8
moonlighting functions
8
aldolase interacts
8
processes aldolase
8
aldolase wasp-dependent
8
actin polymerization
8
polymerization vitro
8

Similar Publications

Structural characterization of pyruvic oxime dioxygenase, a key enzyme in heterotrophic nitrification.

J Bacteriol

January 2025

Department of Environment and Energy Systems, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan.

Nitrification by heterotrophic microorganisms is an important part of the nitrogen cycle in the environment. The enzyme responsible for the core function of heterotrophic nitrification is pyruvic oxime dioxygenase (POD). POD is a non-heme, Fe(II)-dependent enzyme that catalyzes the dioxygenation of pyruvic oxime to produce pyruvate and nitrite.

View Article and Find Full Text PDF
Article Synopsis
  • There are various inflammatory myopathies, including juvenile dermatomyositis (JDM), which can cause muscle inflammation and weakness, with macrophage activation syndrome (MAS) being a severe complication, though it is not frequently reported.
  • A case study of a six-year-old girl with proximal muscle weakness and skin manifestations, leading to a JDM diagnosis, showed elevated lab markers and confirmed muscle involvement through MRI.
  • The girl initially improved with steroid therapy, but later tested positive for anti-MDA5 antibodies, indicating a worse prognosis and highlighting the importance of recognizing MAS as a possible complication in JDM patients with these antibodies.
View Article and Find Full Text PDF

Metabolic reprogramming is considered one of the hallmarks of cancer in which cancer cells reprogram some of their metabolic cascades, mostly driven by the specific chemical microenvironment in cancer tissues. The altered metabolic pathways are increasingly being considered as potential targets for cancer therapy. In this view, Aldolase A (ALDOA), a key glycolytic enzyme, has been validated as a candidate oncogene in several cancers.

View Article and Find Full Text PDF

Background: This case report describes a unique presentation of sphingosine-1-phosphate lyase insufficiency syndrome (SPLIS) caused by a rare SGPL1 variant, highlighting the diagnostic and management challenges associated with this condition.

Case Presentation: A 2-year-old Iranian female presented with steroid-resistant nephrotic syndrome (NS), primary adrenal insufficiency (AI), growth delay, seizures, and hyperpigmentation. Laboratory evaluation revealed hypoalbuminemia, significant proteinuria, hyperkalemia, and elevated adrenocorticotropic hormone (ACTH) levels.

View Article and Find Full Text PDF

Glucose metabolism has been studied extensively, but the role of glucose-derived excretory glycerol remains unclear. Here we show that hypoxia induces NADH accumulation to promote glycerol excretion and this pathway consumes NADH continuously, thus attenuating its accumulation and reductive stress. Aldolase B accounts for glycerol biosynthesis by forming a complex with glycerol 3-phosphate dehydrogenases GPD1 and GPD1L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!