Two-pulse control of large-amplitude vibrations in H2(+).

Chemphyschem

School of Chemistry (BK21), Seoul National University, Seoul 151-747, Republic of Korea.

Published: May 2013

A laser-adiabatic manipulation of the bond (LAMB) scheme using moderately intense fields is proposed to induce and control large-amplitude oscillations in nuclear wave packets. The present scheme involves an ultrashort UV pump pulse to initially create a wave packet in an excited electronic state of the hydrogen molecular ion and a low-frequency control pulse, which is switched on after a given time, leading to controllable vibrational trapping. The choice of H2(+) as the target exploits the larger dipole values that molecular ions present as the internuclear distance increases. The amplitude and oscillation period of the wave packet is tuned by the field parameters of the control pulse, and more importantly, significant dissociation and ionization losses are prevented by keeping the laser intensities below hundreds of Terawatts. Our numerical simulations, based on the solution of the time-dependent Schrödinger equation, show that this control of the bond length is achieved in a wide range of moderate intensities and for relatively long pulse durations, from tens to hundreds of femtoseconds.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.201201078DOI Listing

Publication Analysis

Top Keywords

control large-amplitude
8
wave packet
8
control pulse
8
two-pulse control
4
large-amplitude vibrations
4
vibrations h2+
4
h2+ laser-adiabatic
4
laser-adiabatic manipulation
4
manipulation bond
4
bond lamb
4

Similar Publications

The surface roughness of hole machining greatly influences the mechanical properties of parts, such as early fatigue failure and corrosion resistance. The boring and trepanning association (BTA) deep hole drilling with axial vibration assistance is a compound machining process of the tool cutting and the guide block extrusion. At the same time, the surface of the hole wall is also ironed by the axial large amplitude and low-frequency vibration of the guide block.

View Article and Find Full Text PDF

Space payloads in orbit are vulnerable to small vibrations from satellite platforms, which can degrade their performance. Traditional methods typically involve installing a passive vibration isolation system between the platform and the payload. However, such systems are usually effective only for high-frequency, large-amplitude vibrations and perform poorly in isolating low-frequency vibrations and resonances below 10 Hz.

View Article and Find Full Text PDF

Mixed affective states in bipolar disorder (BD) is a common psychiatric condition that occurs when symptoms of the two opposite poles coexist during an episode of mania or depression. A four-dimensional model by Goldbeter (Progr Biophys Mol Biol 105:119-127, 2011; Pharmacopsychiatry 46:S44-S52, 2013) rests upon the notion that manic and depressive symptoms are produced by two competing and auto-inhibited neural networks. Some of the rich dynamics that this model can produce, include complex rhythms formed by both small-amplitude (subthreshold) and large-amplitude (suprathreshold) oscillations and could correspond to mixed bipolar states.

View Article and Find Full Text PDF

Improving the rheological and tribological properties of emulsion-filled gel by ultrasound-assisted cross-linked myofibrillar protein emulsion: Insight into the simulation of oral processing.

Ultrason Sonochem

January 2025

State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:

This study aimed to investigate the effect of ultrasound-assisted cross-linking of myofibrillar protein (MP) emulsions on the enhancement of rheological and tribological properties of emulsion-filled gel. The micro-morphology, texture, water hold capacity (WHC), chemical forces, linear shear rheological behavior, large amplitude oscillatory shear (LAOS), oil-released content, and simulated oral friction of the water-filled gel (WP-G), the original MP fabricated emulsion-filled gel (NP-G), the crosslinked MP fabricated emulsion-filled gel (NPG-G), and the ultrasound treated crosslinked MP fabricated emulsion-filled gel (NPGU-G) were determined. Results indicated that emulsion as filler phase significantly improved the rheological and tribological properties of the gel, especially for the ultrasound-assisted MP emulsion-filled gel (NPGU-G) group, the smaller droplet size of emulsion contributed to the density and structural uniformity of the gel.

View Article and Find Full Text PDF

Introduction/aims: In healthy subjects, we observed high amplitude motor unit potential (MUP) waveforms that resembled the cannula potential (CP) with a positive sharp wave (PSW)-like waveform. We analyzed the source of this signal, its prevalence, and its effects on the analysis of electromyographic waveforms.

Methods: Three channel recordings were performed to explore the contribution of the needle core and cannula to the MUP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!