Introduction: Neurological disorders with low tissue coenzyme Q10 (CoQ10) levels are important to identify, as they may be treatable.
Methods: We evaluated retrospectively clinical, laboratory, and muscle histochemistry and oxidative enzyme characteristics in 49 children with suspected mitochondrial disorders. We compared 18 with CoQ10 deficiency in muscle to 31 with normal CoQ10 values.
Results: Muscle from CoQ10-deficient patients averaged 5.5-fold more frequent type 2C muscle fibers than controls (P < 0.0001). A type 2C fiber frequency of ≥ 5% had 89% sensitivity and 84% specificity for CoQ10 deficiency in this cohort. No biopsy showed active myopathy. There were no differences between groups in frequencies of mitochondrial myopathologic, clinical, or laboratory features. Multiple abnormalities in muscle oxidative enzyme activities were more frequent in CoQ10-deficient patients than in controls.
Conclusions: When a childhood mitochondrial disorder is suspected, an increased frequency of type 2C fibers in morphologically normal muscle suggests CoQ10 deficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mus.23837 | DOI Listing |
Plant Mol Biol
January 2025
School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
Various biological processes are interconnected in plants. Transcription factors (TFs) often act as regulatory hubs to regulate plant growth and responses to stress by integrating various biological pathways. Despite extensive studies on TFs functions in various plant species, our understanding of the details of TFs regulation remains limited.
View Article and Find Full Text PDFCrit Rev Food Sci Nutr
January 2025
School of Public Health, Wuhan University, Wuhan, Hubei, China.
Coenzyme Q acts as a liposoluble quinone compound in mitochondrial oxidative phosphorylation, serving as an electron carrier and protecting the cell membrane structure as an antioxidant. Coenzyme Q has notable health benefits, including anti-aging, anti-inflammatory, prevention of cardiovascular diseases, and assistance in cancer treatment. However, its poor water solubility, unstable chemical properties, and low bioavailability significantly limit its application.
View Article and Find Full Text PDFJ Child Neurol
January 2025
Department of Pediatrics, Division of Child Neurology, Ankara Etlik City Hospital, Ankara, Turkey.
Mitochondrial complex I transfers electrons from NADH (nicotinamide adenine dinucleotide) to ubiquinone, facilitating ATP synthesis via a proton gradient. Complex I defects are common among the mitochondrial diseases, especially in childhood. , located in complex I's transmembrane domain, is not directly involved in catalytic activity, but the mutations are associated with Leigh syndrome and complex I defects.
View Article and Find Full Text PDFBiotech Histochem
January 2025
Faculty of Medicine Novi Sad, Department of Histology and Embriology, University of Novi Sad, Novi Sad, Serbia.
Numerous studies reported about potential effects of L-carnosine in regulation of tumor growth and metabolism. We evaluated the effects of different concentrations of L-carnosine from supplement on mitochondrial respiratory chain complexes of human embryo lung fibroblasts (MRC-5) and human breast cancer cells (MCF-7), with different energy pathways. Also, we analyzed the proliferation index and expression of various markers of oxidative stress.
View Article and Find Full Text PDFMater Today Bio
February 2025
Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China.
Cell membrane targeting sonodynamic therapy could induce the accumulation of lipid peroxidation (LPO), drive ferroptosis, and further enhances immunogenic cell death (ICD) effects. However, ferroptosis is restrained by the ferroptosis suppressor protein 1 (FSP1) at the plasma membrane, which can catalyze the regeneration of ubiquinone (CoQ10) by using NAD(P)H to suppress the LPO accumulation. This work describes the construction of US-active nanoparticles (TiF NPs), which combinate cell-membrane targeting sonosensitizer TBT-CQi with FSP1 inhibitor (iFSP1), facilitating cell-membrane targeting sonodynamic-triggered ferroptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!