Differential molecular genetic analysis in glioblastoma multiforme of long- and short-term survivors: a clinical study in Chinese patients.

J Neurooncol

Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Tiantan Xili 6, Dongcheng District, Beijing, 100050, People's Republic of China.

Published: June 2013

This study was designed to find whether long-term survivors (LTSs) exhibit molecular genetic differences compared with short-term survivors (STSs) in patients with GBM. Tumors from 12 patients initially diagnosed with GBM and survived longer than 36 months (LTSs) were compared with 30 patients with GBM and STSs (survival <18 months) for detecting of MGMT promoter methylation, 1p/19q LOH and IDH1 mutation. IDH1 mutation and MGMT promoter methylation were significantly more frequent in the LTSs group (P = 0.039 and 0.017, respectively). The incidence of 1p/19q co-deletion was not significantly different (P = 1.0). IDH1 mutation and MGMT promoter methylation might be independent, significant, and favorable factors for LTSs with GBM.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11060-013-1102-xDOI Listing

Publication Analysis

Top Keywords

molecular genetic
8
short-term survivors
8
patients gbm
8
differential molecular
4
genetic analysis
4
analysis glioblastoma
4
glioblastoma multiforme
4
multiforme long-
4
long- short-term
4
survivors clinical
4

Similar Publications

Hypoxia is a major cause of pulmonary hypertension (PH) worldwide, and it is likely that interstitial pulmonary macrophages contribute to this vascular pathology. We observed in hypoxia-exposed mice an increase in resident interstitial macrophages, which expanded through proliferation and expressed the monocyte recruitment ligand CCL2. We also observed an increase in CCR2+ macrophages through recruitment, which express the protein thrombospondin-1 that functionally activates TGF-beta to cause vascular disease.

View Article and Find Full Text PDF

Sensory experience during developmental critical periods has lifelong consequences for circuit function and behavior, but the molecular and cellular mechanisms through which experience causes these changes are not well understood. The antennal lobe houses synapses between olfactory sensory neurons (OSNs) and downstream projection neurons (PNs) in stereotyped glomeruli. Many glomeruli exhibit structural plasticity in response to early-life odor exposure, indicating a general sensitivity of the fly olfactory circuitry to early sensory experience.

View Article and Find Full Text PDF

Atomic force microscopy (AFM) has reached a significant level of maturity in biology, demonstrated by the diversity of modes for obtaining not only topographical images but also insightful mechanical and adhesion data by performing force measurements on delicate samples with a controlled environment (e.g., liquid, temperature, pH).

View Article and Find Full Text PDF

Defense guard: strategies of plants in the fight against Cadmium stress.

Adv Biotechnol (Singap)

December 2024

State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen City, 518107, China.

Soil Cadmium (Cd) contamination is a worldwide problem with negative impacts on human health. Cultivating the Cd-Pollution Safety Cultivar (Cd-PSC) with lower Cd accumulation in edible parts of plants is an environmentally friendly approach to ensure food security with wide application prospects. Specialized mechanisms have been addressed for Cd accumulation in crops.

View Article and Find Full Text PDF

Growth hormone-releasing hormone signaling and manifestations within the cardiovascular system.

Rev Endocr Metab Disord

January 2025

Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building, 1501 N.W. 10th Avenue, Room 908, Miami, FL, 33136, USA.

Growth hormone (GH)-releasing hormone (GHRH), a hypothalamic peptide initially characterized for its role in GH regulation, has gained increasing attention due to its GH-independent action on peripheral physiology, including that of the cardiovascular system. While its effects on the peripheral vasculature are still under investigation, GHRH and synthetic agonists have exhibited remarkable receptor-mediated cardioprotective properties in preclinical models. GHRH and its analogs enhance myocardial function by improving contractility, reducing oxidative stress, inflammation, and offsetting pathological remodeling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!